Dify智能体平台源码二次开发笔记(6) - 优化知识库pdf文档的识别

目录

前言

新增PdfNewExtractor类

替换ExtractProcessor类

最终结果


前言

dify的1.1.3版本知识库pdf解析实现使用pypdfium2提取文本,主要存在以下问题:

  1. 文本提取能力有限,对表格和图片支持不足

  2. 缺乏专门的中文处理优化

  3. 没有文档结构分析

  4. 缺少文档质量评估

建议优化方案:

  1. 使用pdfplumber替代pypdfium2

  2. 增加OCR支持

  3. 优化中文处理逻辑

  4. 添加文档结构分析

  5. 实现智能表格识别

  6. 增加缓存机制

  7. 优化大文件处理

导入包pdfplumber和pytesseract

复制代码
pip install pdfplumber
pip install pytesseract

新增PdfNewExtractor类

新增一个PdfNewExtractor处理类替代老的PdfExtractor

python 复制代码
from collections.abc import Iterator
from typing import Optional, cast
import pdfplumber
import pytesseract
from PIL import Image
import io

from core.rag.extractor.blob.blob import Blob
from core.rag.extractor.extractor_base import BaseExtractor
from core.rag.models.document import Document
from extensions.ext_storage import storage

class PdfNewExtractor(BaseExtractor):
    """Enhanced PDF loader with improved text extraction, OCR support, and structure analysis.

    Args:
        file_path: Path to the PDF file to load.
        file_cache_key: Optional cache key for storing extracted text.
        enable_ocr: Whether to enable OCR for text extraction from images.
    """

    def __init__(self, file_path: str, file_cache_key: Optional[str] = None, enable_ocr: bool = False):
        """Initialize with file path and optional settings."""
        self._file_path = file_path
        self._file_cache_key = file_cache_key
        self._enable_ocr = enable_ocr

    def extract(self) -> list[Document]:
        """Extract text from PDF with caching support."""
        plaintext_file_exists = False
        if self._file_cache_key:
            try:
                text = cast(bytes, storage.load(self._file_cache_key)).decode("utf-8")
                plaintext_file_exists = True
                return [Document(page_content=text)]
            except FileNotFoundError:
                pass

        documents = list(self.load())
        text_list = []
        for document in documents:
            text_list.append(document.page_content)
        text = "\n\n".join(text_list)

        # Save plaintext file for caching
        if not plaintext_file_exists and self._file_cache_key:
            storage.save(self._file_cache_key, text.encode("utf-8"))

        return documents

    def load(self) -> Iterator[Document]:
        """Lazy load PDF pages with enhanced text extraction."""
        blob = Blob.from_path(self._file_path)
        yield from self.parse(blob)

    def parse(self, blob: Blob) -> Iterator[Document]:
        """Parse PDF with enhanced features including OCR and structure analysis."""
        with blob.as_bytes_io() as file_obj:
            with pdfplumber.open(file_obj) as pdf:
                for page_number, page in enumerate(pdf.pages):
                    # Extract text with layout preservation and encoding detection
                    content = page.extract_text(layout=True)
                    # Try to detect and fix encoding issues
                    try:
                        # First try to decode as UTF-8
                        content = content.encode('utf-8').decode('utf-8')
                    except UnicodeError:
                        try:
                            # If UTF-8 fails, try GB18030 (common Chinese encoding)
                            content = content.encode('utf-8').decode('gb18030', errors='ignore')
                        except UnicodeError:
                            # If all else fails, use a more lenient approach
                            content = content.encode('utf-8', errors='ignore').decode('utf-8', errors='ignore')
                    
                    # Extract tables if present
                    tables = page.extract_tables()
                    if tables:
                        table_text = "\n\nTables:\n"
                        for table in tables:
                            # Convert table to text format
                            table_text += "\n" + "\n".join(
                                ["\t".join([str(cell) if cell else "" for cell in row]) 
                                 for row in table]
                            )
                        content += table_text

                    # Perform OCR if enabled and text content is limited or contains potential encoding issues
                    if self._enable_ocr and (len(content.strip()) < 100 or any('\ufffd' in line for line in content.splitlines())):
                        image = page.to_image()
                        img_bytes = io.BytesIO()
                        image.original.save(img_bytes, format='PNG')
                        img_bytes.seek(0)
                        pil_image = Image.open(img_bytes)
                        # Use multiple language models and improve OCR accuracy
                        ocr_text = pytesseract.image_to_string(
                            pil_image,
                            lang='chi_sim+chi_tra+eng',  # Support both simplified and traditional Chinese
                            config='--psm 3 --oem 3'  # Use more accurate OCR mode
                        )
                        if ocr_text.strip():
                            # Clean and normalize OCR text
                            ocr_text = ocr_text.replace('\x0c', '').strip()
                            content = f"{content}\n\nOCR Text:\n{ocr_text}"

                    metadata = {
                        "source": blob.source,
                        "page": page_number,
                        "has_tables": bool(tables)
                    }
                    
                    yield Document(page_content=content, metadata=metadata)

替换ExtractProcessor类

在ExtractProcessor中把两处extractor = PdfExtractor(file_path),替换成extractor = PdfNewExtractor(file_path)。

分别在代码144行和148行

最终结果

经过测试,优化效果完美

相关推荐
小章UPUP1 分钟前
数学建模中的机器学习方法
人工智能·机器学习·数学建模
whale fall4 分钟前
如何在同一台电脑里安装32 位 Python 和 64 位 Python
开发语言·笔记·python·学习
学而要时习5 分钟前
Claude Code 深度测评:当 AI 遇到“豪纳森数”与“光谱分析”,它能扛得住吗?
人工智能
石去皿6 分钟前
Depth Viewer: 16-bit 深度图可视化工具
人工智能·chatgpt·prompt
cetcht88886 分钟前
变电站巡检机器人及智能辅助系统集成解决方案
人工智能·机器人
困死,根本不会9 分钟前
OpenCV摄像头实时处理:稳定的红绿激光点实时检测工具
笔记·opencv·学习
瑞璐塑业peek注塑9 分钟前
重塑机器人轻量化设计:PEEK精密注塑结构件壳体_高强度&耐磨损
人工智能·机器人
JavaEdge.10 分钟前
ClawBot(Moltbot)安装与上手:用一条命令在本地跑起个人 AI 助手(含 Dashboard/Chat)
人工智能
AI猫站长12 分钟前
快讯|灵心巧手旗下钢琴机器人将组建“机器人F4”登陆央视迎春
人工智能·机器人·具身智能·灵心巧手·央视
TMT星球16 分钟前
WPS 365推出“AI医药报告写作助手”,撰写效率提升超60%
人工智能·wps