【贪心】C++ 活动安排问题

问题描述

n个需要使用某个公共资源的活动

S={a1,...,an}

ai在半开区间[si, fi)使用资源,其中si为开始时间,fi为结束时间

若区间[si, fi)与区间[sj, fj)不相交,称活动i与活动j是相容的

活动安排目标:安排最大可能相容的活动集合,即安排的活动数目最多

分析

该问题满足贪心选择性质和最优子结构性质,可以使用贪心法解决

贪心选择性质 :是指所求问题的整体最优解,可以通过一系列局部最优的选择,即贪心选择来达到

最优子结构性质:一个问题的最优解包含其子问题的最优解

将各个活动按照其结束时间排序,结束时间最早的排在前面,优先安排结束最早的活动。这样做的原因是可以为后面的其他活动留下尽可能多的时间

代码

cpp 复制代码
int main() {
	int n, count=1;
	int s[1000], f[1000], a[1000];
	a[0] = 1;
	cin >> n;
	for (int i = 0; i < n; i++) {
		cin >> s[i] >> f[i];
	}
	sort(s, f, n);//排序
	int j = 0;
	for (int i = 1; i < n; i++) {
		if (s[i] >= f[j]) {
			count++;
			a[i] = 1;
			j = i;
		}
		else
			a[i] = 0;
	}
	cout << count;
	return 0;
}
  • s[i]第i个活动的开始时间
  • f[i]第i个活动的结束时间
  • a[i]第i个活动若被选中安排,则a[i]为1,若未被安排,则a[i]为0。可用于选出一种最优情况,但最优解不唯一
  • sort(s,f,n)按照f[i]递增的顺序对s、f数组进行排序,可选用多种排序方法,最优复杂度为O(nlogn)

运行结果

输入在给定的11个活动中,可选取第1、4、8、11项活动,此时可安排4项活动,为最多数目

最优解的情况不止一种,如,将上述情况中第8项换成第9项,同样可以安排4项,也是最优的一种情况

复杂度

算法的时间复杂度取决于排序的时间复杂度,排序的复杂度最优为O(nlogn),排序之外的复杂度只需要一次循环遍历即可,是O(n)的复杂度

故算法的时间复杂度为O(nlogn)

相关推荐
charlie11451419127 分钟前
精读C++20设计模式:行为型设计模式:中介者模式
c++·学习·设计模式·c++20·中介者模式
楼田莉子35 分钟前
Qt开发学习——QtCreator深度介绍/程序运行/开发规范/对象树
开发语言·前端·c++·qt·学习
逻辑留白陈42 分钟前
Adaboost进阶:与主流集成算法对比+工业级案例+未来方向
算法
Learn Beyond Limits1 小时前
Mean Normalization|均值归一化
人工智能·神经网络·算法·机器学习·均值算法·ai·吴恩达
oioihoii1 小时前
超越 std::unique_ptr:探讨自定义删除器的真正力量
c++
天选之女wow1 小时前
【代码随想录算法训练营——Day28】贪心算法——134.加油站、135.分发糖果、860.柠檬水找零、406.根据身高重建队列
算法·leetcode·贪心算法
Gohldg1 小时前
C++算法·贪心例题讲解
c++·数学·算法·贪心算法
韩立学长1 小时前
【开题答辩实录分享】以《基于python的奶茶店分布数据分析与可视化》为例进行答辩实录分享
开发语言·python·数据分析
天若有情6731 小时前
C++空值初始化利器:empty.h使用指南
开发语言·c++
远远远远子2 小时前
类与对象 --1
开发语言·c++·算法