自动驾驶第一性原理

所谓的第一性原理:

就是指从最基本的物理规律,数据逻辑及工程约束条件出发,剥离所有的非本质的假设,直接推导出自动驾驶最核心的要素。

自动驾驶核心框架分解:

1、根本目标:

安全高效的将人/物从A地运送到B地。

安全:必须遵守基本的物理规律,交通规则。

高效:最优路径、能耗、时间等满足人类出行。

2、核心问题分解:

感知

第一性原理:通过传感器获取物理世界的精确状态。

物理基础:电磁波、声波、惯性定律。

数学本质:传感器->3D空间映射,坐标变换,点云处理。

约束:光速限制,海森堡不确定性(噪声处理)

定位与建图:

第一性原理:在已知、未知世界里确定自身位置。

物理基础:相对运动(里程计)、引力场(gps)、几何一致性(slam)。

数学本质:贝叶斯滤波(卡尔曼小滤波,粒子滤波),图优化。

决策与规划:

第一性原理:在约束条件下找一到最优行动路径。

物理基础:车辆动力学(加速度、转向角限制)。

数学本质:最优控制,马尔可夫决策过程(MDP)

控制:

第一性原理:将决策转化为物理执行。

物理基础:牛顿力学、PID控制与模型预测控制

约束:执行器延迟,轮胎摩擦圆理论。

3、关键约束条件:

物理不可违背:

最大减速度由路面摩擦系数决定a=ug。

感知范围受光速限制:传感器更新频率必须>动态环境变化频率。

计算不可约性:

规划问题复杂度随场景指数增长。

信息不完备:

传感器视角有限

其它交通参与者意图不可直接观测。

4、从第一性出发的解决方案

传感器融合:不同物理原理的传感器互补盲区。

概率框架:用概率分布表示不确定性。(如高斯过程预测行人轨迹)

分层架构:将问题分解成感知->预测->规则->控制的模块化流水线,降低复杂度。

端到端学习:直接拟合传感器输入到控制输出的函数(需要满足物理可解释性)。

5、终极挑战:

第尾问题:99%的场景可用规则解决,但1%的极端场景(如塌方,信号故障)需要人类级推理能力。

物理VS逻辑:

物理层:如何保证制动距离<感知距离(v*v<2ugd感知)。

逻辑层:如何定义伦理权衡。

总结:

自动驾驶第一性原理最终可归结为:在经典理物理约束下,通过信息熵最小化(消除不确定性)实现路径最优化。所有的技术路径演进(深度学习,v2x,高精地图),本质上都是为了更逼近这个理想状态。

相关推荐
信雪神话3 小时前
基于 BEVFormer 的 3D 目标检测 + OCC 占据预测BEV多任务模型设计与训练(Apollo-Vision-Net 实战)
自动驾驶·3d目标检测·bev多任务感知·occ占据栅格预测
Godspeed Zhao8 小时前
自动驾驶中的传感器技术80——Sensor Fusion(3)
人工智能·机器学习·自动驾驶
Godspeed Zhao18 小时前
自动驾驶中的传感器技术77——Sensor Fusion(0)
人工智能·机器学习·自动驾驶
Godspeed Zhao1 天前
自动驾驶中的传感器技术78——Sensor Fusion(1)
人工智能·机器学习·自动驾驶
STLearner1 天前
AAAI 2026 | 时空数据(Spatial-temporal)论文总结[上](时空预测,轨迹挖掘,自动驾驶等)
大数据·人工智能·python·深度学习·机器学习·数据挖掘·自动驾驶
STLearner1 天前
AAAI 2026 | 时空数据(Spatial-temporal)论文总结[下](自动驾驶,天气预报,城市科学,POI推荐等)
人工智能·python·深度学习·机器学习·数据挖掘·自动驾驶·智慧城市
Coder个人博客1 天前
三大DDS实现对比分析(CycloneDDS/Fast DDS/OpenDDS)
人工智能·自动驾驶·dds
被遗忘的旋律.1 天前
TCP模型复现《Trajectory-guided Control Prediction for End-to-end Autonomous Driving》
深度学习·机器学习·自动驾驶
Coder个人博客2 天前
Apollo Canbus 底盘通信模块接口调用流程图与源码分析
人工智能·自动驾驶·apollo
Coder个人博客2 天前
Apollo Prediction 预测模块接口调用流程图与源码分析
人工智能·自动驾驶·apollo