1、三大容器
nn.Sequential
:按顺序包装多个网络层nn.ModuleList
:像 Python 中的 list 一样包装多个网络层nn.ModuleDict
:像 Python 中的 dict 一样包装多个网络层
1.1 Sequential

1.1.1 概念
nn.Sequential
是 nn.Module
的容器,用于按顺序包装一组网络层
1.1.2 特征
- 顺序性:各网络层之间严格按顺序构建
- 自带 forward():自带的 forward 里,通过 for 循环依次执行向前传播运算
1.3 代码框架
LeNetSequential()
python
class LeNetSequential(nn.Module):
def __init__(self, classes):
super(LeNetSequential, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 6, 5),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(6, 16, 5),
nn.ReLU(),
nn.MaxPool2d(kernel_size=2, stride=2),)
self.classifier = nn.Sequential(
nn.Linear(16*5*5, 120),
nn.ReLU(),
nn.Linear(120, 84),
nn.ReLU(),
nn.Linear(84, classes),)
def forward(self, x):
x = self.features(x)
x = x.view(x.size()[0], -1)
x = self.classifier(x)
return x
LeNetSequentialOrderDict()
python
class LeNetSequentialOrderDict(nn.Module):
def __init__(self, classes):
super(LeNetSequentialOrderDict, self).__init__()
self.features = nn.Sequential(OrderedDict({
'conv1': nn.Conv2d(3, 6, 5),
'relu1': nn.ReLU(inplace=True),
'pool1': nn.MaxPool2d(kernel_size=2, stride=2),
'conv2': nn.Conv2d(6, 16, 5),
'relu2': nn.ReLU(inplace=True),
'pool2': nn.MaxPool2d(kernel_size=2, stride=2),
}))
self.classifier = nn.Sequential(OrderedDict({
'fc1': nn.Linear(16*5*5, 120),
'relu3': nn.ReLU(),
'fc2': nn.Linear(120, 84),
'relu4': nn.ReLU(inplace=True),
'fc3': nn.Linear(84, classes),
}))
def forward(self, x):
x = self.features(x)
x = x.view(x.size()[0], -1)
x = self.classifier(x)
return x
1.2 ModuleList
1.2.1 概念
nn.ModuleList
是 nn.module
的容器,用于包装一组网络层,以索引方式调用网络层
1.2.2 主要方法
append()
:在 ModuleList 后面添加网络层extend()
:拼接两个 ModuleListinsert()
:指定在 ModuleList 中某个位置插入网络层
1.2.3 代码框架
python
class ModuleList(nn.Module):
def __init__(self):
super(ModuleList, self).__init__()
self.linears = nn.ModuleList([nn.Linear(10, 10) for i in range(20)])
def forward(self, x):
for i, linear in enumerate(self.linears):
x = linear(x)
return x
1.3 ModuleDict
1.3.1 概念
nn.ModuleDict
是 nn.module
的容器,用于包装一组网络层,以索引方式调用网络层
1.3.2 主要方法
clear()
:清空 ModuleDictitems()
:返回可迭代的键值对(key-value pairs)keys()
:返回字典的键(key)values()
:返回字典的值(value)pop()
:返回一组键值对并从字典中删除
1.3.3 代码框架
python
class ModuleDict(nn.Module):
def __init__(self):
super(ModuleDict, self).__init__()
self.choices = nn.ModuleDict({
'conv': nn.Conv2d(10, 10, 3),
'pool': nn.MaxPool2d(3)
})
self.activations = nn.ModuleDict({
'relu': nn.ReLU(),
'prelu': nn.PReLU()
})
def forward(self, x, choice, act):
x = self.choices[choice](x)
x = self.activations[act](x)
return x
1.4 小结
nn.Sequential
:顺序性,各网络层之间严格按照顺序执行,常用于 block 构建nn.ModuleList
:迭代性,常用于大量重复网络构建,通过 for 循环实现重复构建nn.ModuleDict
:字典性,冲用于可选择的网络层构建
2、AlexNet

2.1 背景介绍
2021年 AlextNet 以高出第二名10多个百分点的准确率获得 ImageNet 分类任务冠军,开创了卷积神经网络的新时代
2.2 特征
- 采用 ReLU 激活函数:替换了 sigmoid 函数,减轻梯度消失的问题
- 采用 LRN(Local Response Normalization):对数据进行归一化,抑制其对输出的影响,减轻梯度消失的问题
- 采用 Dropout:提高全连接层的鲁棒性,增加网络的泛化能力
- 采用 Data Augmentation:TenCrop 策略,色彩修改
2.3 代码框架
python
class AlexNet(nn.Module):
def __init__(self, num_classes: int = 1000, dropout: float = 0.5) -> None:
super().__init__()
_log_api_usage_once(self)
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(64, 192, kernel_size=5, padding=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
nn.Conv2d(192, 384, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(384, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.Conv2d(256, 256, kernel_size=3, padding=1),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2),
)
self.avgpool = nn.AdaptiveAvgPool2d((6, 6))
self.classifier = nn.Sequential(
nn.Dropout(p=dropout),
nn.Linear(256 * 6 * 6, 4096),
nn.ReLU(inplace=True),
nn.Dropout(p=dropout),
nn.Linear(4096, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.features(x)
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
微语录:熬过无人问津的日子,才能拥抱诗和远方。