Spark-SQL(四)

本节课学习了spark连接hive数据,在 spark-shell 中,可以看到连接成功

将依赖放进pom.xml中

运行代码

创建文件夹 spark-warehouse

为了使在 node01:50070 中查看到数据库,需要添加如下代码,就可以看到新创建的数据库 spark-sql_1

复制代码
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession

object HiveSupport {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("hql")
    val spark = SparkSession.builder().enableHiveSupport()
      .config("spark.sql.warehouse.dir", "hdfs://node01:9000/user/hive/warehouse")
      .config(sparkConf).getOrCreate()

    if (!spark.catalog.databaseExists("spark_sql_1")) {
      spark.sql("create database spark_sql_1")
    }
    spark.sql("use spark_sql_1")

    // 创建表
    spark.sql(
      """
        |create table json(data string)
        |row format delimited
        |""".stripMargin)

    spark.sql("load data local inpath 'Spark-SQL/input/movie.txt' into table json")

    spark.sql("select * from json").show()

    spark.sql(
      """
        |create table movie_info
        |as
        |select get_json_object(data,'$.movie') as movie,
        |get_json_object(data,'$.uid') as uid
        |from json
        |""".stripMargin)

    spark.sql("select * from movie_info").show()

    spark.stop()
  }
}

可以使用提取数据

运行结果

实验报告

将数据放进input中,并运行如下代码,用于输出统计有效数据条数用户数量最多的前二十个地址

复制代码
import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession

object uid {
  def main(args: Array[String]): Unit = {
    val sparkConf = new SparkConf().setMaster("local[*]").setAppName("JsonDataAnalysis")
    val spark = SparkSession.builder().enableHiveSupport()
      .config("spark.sql.warehouse.dir", "hdfs://node01:9000/user/hive/warehouse")
      .config(sparkConf).getOrCreate()

    // 使用spark-sql_1数据库
    spark.sql("use spark_sql_1")

    // 创建表用于存储原始JSON数据-uid
    spark.sql(
      """
        |create table if not exists data_set(data string)
        |row format delimited
        |""".stripMargin)

    // 加载json数据到uid表中
    spark.sql("load data local inpath 'D:/school/workspace/workspace-IJ/Spark/Spark-SQL/input/user_login_info.json' into table data_set")

    // 判断filter_data表是否存在,若存在则删除(可根据实际需求调整此处逻辑,比如不删除直接使用等)
    if (spark.catalog.tableExists("spark_sql_1.filter_data")) {
      spark.sql("drop table filter_data")
    }

    // 筛选数据(不是null的)并创建filter_data表
    spark.sql(
      """
        |create table filter_data
        |as
        |select
        |    get_json_object(data, '$.uid') as uid,
        |    get_json_object(data, '$.phone') as phone,
        |    get_json_object(data, '$.addr') as addr
        |from
        |    data_set
        |where
        |    get_json_object(data, '$.uid') is not null
        |    and get_json_object(data, '$.phone') is not null
        |    and get_json_object(data, '$.addr') is not null
        |""".stripMargin)

    // 统计有效数据条数
    val validDataCount = spark.sql("select count(*) from filter_data").collect()(0)(0).toString.toLong
    println(s"有效数据条数: $validDataCount")

    // 统计每个地址的用户数量并排序,取前20
    spark.sql(
      """
        |select
        |    addr,
        |    count(*) as user_count
        |from
        |    filter_data
        |group by
        |    addr
        |order by
        |    user_count desc
        |limit 20
        |""".stripMargin).show()


    spark.stop()
  }
}

运行结果:

相关推荐
Robot侠9 小时前
极简LLM入门指南4
大数据·python·llm·prompt·提示工程
技术钱10 小时前
vue3解决大数据加载页面卡顿问题
大数据
福客AI智能客服13 小时前
从被动响应到主动赋能:家具行业客服机器人的革新路径
大数据·人工智能
Mr.朱鹏13 小时前
SQL深度分页问题案例实战
java·数据库·spring boot·sql·spring·spring cloud·kafka
小五传输14 小时前
隔离网闸的作用是什么?新型网闸如何构筑“数字护城河”?
大数据·运维·安全
ccino .14 小时前
sql注入中过滤分隔符的测试方法
数据库·sql
jkyy201414 小时前
AI健康医疗开放平台:企业健康业务的“新基建”
大数据·人工智能·科技·健康医疗
蚁巡信息巡查系统15 小时前
政府网站与政务新媒体检查指标抽查通报如何面对
大数据·内容运营
视界先声15 小时前
2025年GEO自动化闭环构建实践:监测工具选型与多平台反馈机制工程分享
大数据·人工智能·自动化
百***243715 小时前
GPT5.1 vs Claude-Opus-4.5 全维度对比及快速接入实战
大数据·人工智能·gpt