Spark-SQL4

一 .Spark-SQL核心编程(六)

Spark-SQL连接Hive

Apache Hive 是 Hadoop 上的 SQL 引擎,Spark SQL 编译时可以包含 Hive 支持,也可以不包含。包含 Hive 支持的 Spark SQL 可以支持 Hive 表访问、UDF (用户自定义函数)、Hive 查询语言(HQL)等。需要强调的一点是,如果要在 Spark SQL 中包含Hive 的库,并不需要事先安装 Hive。一般来说,最好还是在编译 Spark SQL 时引入 Hive支持,这样就可以使用这些特性了。

使用方式分为内嵌Hive、外部Hive、Spark-SQL CLI、Spark beeline 以及代码操作。

1、内嵌的 HIVE

如果使用 Spark 内嵌的 Hive, 则什么都不用做, 直接使用即可。但是在实际生产活动当中,几乎没有人去使用内嵌Hive这一模式。

2、外部的 HIVE

在虚拟机中下载以下配置文件:

如果想在spark-shell中连接外部已经部署好的 Hive,需要通过以下几个步骤:

① Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下,并将url中的localhost改为node01

② 把 MySQL 的驱动 copy 到 jars/目录下

③ 把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下

④ 重启 spark-shell

3、运行 Spark beeline(了解)

Spark Thrift Server 是 Spark 社区基于 HiveServer2 实现的一个 Thrift 服务。旨在无缝兼容HiveServer2。因为 Spark Thrift Server 的接口和协议都和 HiveServer2 完全一致,因此我们部署好 Spark Thrift Server 后,可以直接使用 hive 的 beeline 访问 Spark Thrift Server 执行相关语句。Spark Thrift Server 的目的也只是取代 HiveServer2,因此它依旧可以和 Hive Metastore进行交互,获取到 hive 的元数据。如果想连接 Thrift Server,需要通过以下几个步骤:

Spark 要接管 Hive 需要把 hive-site.xml 拷贝到 conf/目录下

把 Mysql 的驱动 copy 到 jars/目录下

把 core-site.xml 和 hdfs-site.xml 拷贝到 conf/目录下

启动 Thrift Server

使用 beeline 连接 Thrift Server

beeline -u jdbc:hive2://node01:10000 -n root

4、运行Spark-SQL CLI

Spark SQL CLI 可以很方便的在本地运行 Hive 元数据服务以及从命令行执行查询任务。在 Spark 目录下执行如下命令启动 Spark SQL CLI,直接执行 SQL 语句,类似于 Hive 窗口。

操作步骤:

将mysql的驱动放入jars/当中;

将hive-site.xml文件放入conf/当中;

运行bin/目录下的spark-sql.cmd 或者打开cmd,在

D:\spark\spark-3.0.0-bin-hadoop3.2\bin当中直接运行spark-sql

可以直接运行SQL语句,如下所示:

5、代码操作Hive

①、 导入依赖。

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-hive_2.12</artifactId>

<version>3.0.0</version>

</dependency>

<dependency>

<groupId>org.apache.hive</groupId>

<artifactId>hive-exec</artifactId>

<version>2.3.3</version>

</dependency>

可能出现下载jar包的问题:

D:\maven\repository\org\pentaho\pentaho-aggdesigner-algorithm\5.1.5-jhyde

②、将hive-site.xml 文件拷贝到项目的 resources 目录中。

③、代码实现。

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("hive")

val spark:SparkSession = SparkSession.builder()

.enableHiveSupport()

.config(sparkConf)

.getOrCreate()

spark.sql("show databases").show()

spark.sql("create database spark_sql")

spark.sql("show databases").show()

注意:

如果在执行操作时,出现如下错误:

可以在代码最前面增加如下代码解决:

System.setProperty("HADOOP_USER_NAME", "node01")

此处的 node01 改为自己的 hadoop 用户名称

在开发工具中创建数据库默认是在本地仓库,通过参数修改数据库仓库的地址: config("spark.sql.warehouse.dir","hdfs://node01:9000/user/hive/warehouse")

运行代码可以得出以下结果:

但其实数据库位置是在windows本地上面,如下所示:

但是虚拟机里面只有四个数据库,如下图所示:

为了解决该问题,需要重新设置一下配置:

val spark = SparkSession.builder()

.enableHiveSupport()

.config("spark.sql.warehouse.dir","hdfs://node01:9000/user/hive/warehouse")

.config(sparkConf)

.getOrCreate()

之后再次创建数据库sqark_sql_1,就成功了

63220是本地的数据库名称,不是虚拟机的

相关推荐
yt948328 小时前
如何在IDE中通过Spark操作Hive
ide·hive·spark
不吃饭的猪14 小时前
记一次spark在docker本地启动报错
大数据·docker·spark
Leo.yuan16 小时前
实时数据仓库是什么?数据仓库设计怎么做?
大数据·数据库·数据仓库·数据分析·spark
£菜鸟也有梦21 小时前
从0到1,带你走进Flink的世界
大数据·hadoop·flink·spark
小伍_Five1 天前
Spark实战能力测评模拟题精析【模拟考】
java·大数据·spark·scala·intellij-idea
不吃饭的猪1 天前
记一次运行spark报错
大数据·分布式·spark
qq_463944861 天前
【Spark征服之路-2.1-安装部署Spark(一)】
大数据·分布式·spark
后端码匠2 天前
Kafka 单机部署启动教程(适用于 Spark + Hadoop 环境)
hadoop·spark·kafka
技术吧4 天前
Spark-TTS: AI语音合成的“变声大师“
大数据·人工智能·spark
MyikJ6 天前
Java互联网大厂面试:从Spring Boot到Kafka的技术深度探索
java·spring boot·微服务·面试·spark·kafka·spring security