【模板匹配】图像处理(OpenCV)-part10

19.1模板匹配

模板匹配就是用模板图(通常是一个小图)在目标图像(通常是一个比模板图大的图片)中不断的滑动比较,通过某种比较方法来判断是否匹配成功,找到模板图所在的位置。

不会有边缘填充

类似卷积滑动比较挨个比较象素

返回结果大小是:目标图大小-模板图大小+1。

19.2 匹配方法

res=cv2.matchTemplate(image, templ, method)

image:原图像,这是一个灰度图像或彩色图像(在这种情况下,匹配将在每个通道上独立进行)。

templ:模板图像,也是灰度图像或与原图像相同通道数的彩色图像。

method:匹配方法,可以是以下之一:

cv2.TM_CCOEFF

cv2.TM_CCOEFF_NORMED

cv2.TM_CCORR

cv2.TM_CCORR_NORMED

cv2.TM_SQDIFF

cv2.TM_SQDIFF_NORMED

这些方法决定了如何度量模板图像与原图像子窗口之间的相似度。

返回值res

函数在完成图像模板匹配后返回一个结果矩阵,这个矩阵的大小与原图像相同。矩阵的每个元素表示原图像中相应位置与模板图像匹配的相似度。

匹配方法不同,返回矩阵的值的含义也会有所区别。以下是几种常用的匹配方法及其返回值含义:

  1. cv2.TM_SQDIFFcv2.TM_SQDIFF_NORMED

    返回值越接近0 ,表示匹配程度越。最小值对应的最佳匹配位置。

  2. cv2.TM_CCORRcv2.TM_CCORR_NORMED

    返回值越大 ,表示匹配程度越好。最大值对应的最佳匹配位置。

  3. cv2.TM_CCOEFFcv2.TM_CCOEFF_NORMED

    返回值越大 ,表示匹配程度越好。最大值对应的最佳匹配位置。

19.2.1 平方差匹配

cv2.TM_SQDIFF

以模板图与目标图所对应的像素值使用平方差公式来计算,其结果越小,代表匹配程度越高,计算过程举例如下。

注意:模板匹配过程皆不需要边缘填充,直接从目标图像的左上角开始计算。

19.2.2 归一化平方差匹配

cv2.TM_SQDIFF_NORMED

与平方差匹配类似,只不过需要将值统一到0到1,计算结果越小,代表匹配程度越高,计算过程举例如下。

19.2.3 相关匹配

cv2.TM_CCORR

使用对应像素的乘积进行匹配,乘积的结果越大其匹配程度越高,计算过程举例如下。

19.2.4 归一化相关匹配

cv2.TM_CCORR_NORMED

与相关匹配类似,只不过是将其值统一到0到1之间,值越大,代表匹配程度越高,计算过程举例如下。

19.2.5 相关系数匹配

cv2.TM_CCOEFF

需要先计算模板与目标图像的均值,然后通过每个像素与均值之间的差的乘积再求和来表示其匹配程度,1表示完美的匹配,-1表示最差的匹配,计算过程举例如下。

19.2.6 归一化相关系数匹配

cv2.TM_CCOEFF_NORMED

也是将相关系数匹配的结果统一到0到1之间,值越接近1代表匹配程度越高,计算过程举例如下。

19.3 绘制轮廓

找的目标图像中匹配程度最高的点,我们可以设定一个匹配阈值来筛选出多个匹配程度高的区域。

  • loc=np.where(array > 0.8) #loc包含array中所有大于0.8的元素索引的数组

np.where(condition) 是 NumPy 的一个函数,当条件为真时,返回满足条件的元素的索引。

  • zip(*loc)

    • *loc 是解包操作,将 loc 中的多个数组拆开,作为单独的参数传递给 zip

    • zip 将这些数组按元素一一配对,生成一个迭代器,每个元素是一个元组,表示一个坐标点。

复制代码
x=list([[1,2,3,4,3],[23,4,2,4,2]])
print(list(zip(*x)))#[(1, 23), (2, 4), (3, 2), (4, 4), (3, 2)]
python 复制代码
import cv2 as cv
import numpy as np

#读图
img = cv.imread('images/huoyingrenzhe.jpg')
temp = cv.imread('images/zhipai.jpg')
#转灰度
img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
temp_gray = cv.cvtColor(temp, cv.COLOR_BGR2GRAY)
#模板匹配,拿到匹配结果,返回匹配程度矩阵
res = cv.matchTemplate(img_gray, temp_gray, cv.TM_CCOEFF_NORMED)
#设置阈值,使用np.where()获取符合条件的坐标
threshold = 0.8
#得到[[y1,y2,y3...],[x1,x2,x3...]]
loc = np.where(res >= threshold)
h,w = temp.shape[:2]
#解包
for pt in zip(*loc[::-1]):
    cv.rectangle(img, pt, (pt[0] + w, pt[1] + h), (0, 0, 255), 2)
cv.imshow('img', img)
cv.waitKey(0)
cv.destroyAllWindows()

|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| | |

注意得到[[y1,y2,y3...],[x1,x2,x3...]]这样的返回值,因为先返回行索引再返回列索引

相关推荐
后端小张6 小时前
智眼法盾:基于Rokid AR眼镜的合同条款智能审查系统开发全解析
人工智能·目标检测·计算机视觉·ai·语言模型·ar·硬件架构
浩浩的代码花园6 小时前
自研端侧推理模型实测效果展示
android·深度学习·计算机视觉·端智能
这张生成的图像能检测吗9 小时前
(论文速读)EfficientTrain++: 高效视觉骨干训练的通用课程学习
人工智能·深度学习·计算机视觉·训练方法
翔云 OCR API15 小时前
人脸识别API开发者对接代码示例
开发语言·人工智能·python·计算机视觉·ocr
AndrewHZ16 小时前
【图像处理基石】如何在图像中提取出基本形状,比如圆形,椭圆,方形等等?
图像处理·python·算法·计算机视觉·cv·形状提取
音视频牛哥19 小时前
轻量级RTSP服务的工程化设计与应用:从移动端到边缘设备的实时媒体架构
人工智能·计算机视觉·音视频·音视频开发·rtsp播放器·安卓rtsp服务器·安卓实现ipc功能
audyxiao0011 天前
期刊研究热点扫描|一文了解计算机视觉顶刊TIP的研究热点
人工智能·计算机视觉·transformer·图像分割·多模态
AI科技星1 天前
为什么变化的电磁场才产生引力场?—— 统一场论揭示的时空动力学本质
数据结构·人工智能·经验分享·算法·计算机视觉
深蓝海拓1 天前
opencv的模板匹配(Template Matching)学习笔记
人工智能·opencv·计算机视觉
滨HI01 天前
C++ opencv简化轮廓
开发语言·c++·opencv