【模板匹配】图像处理(OpenCV)-part10

19.1模板匹配

模板匹配就是用模板图(通常是一个小图)在目标图像(通常是一个比模板图大的图片)中不断的滑动比较,通过某种比较方法来判断是否匹配成功,找到模板图所在的位置。

不会有边缘填充

类似卷积滑动比较挨个比较象素

返回结果大小是:目标图大小-模板图大小+1。

19.2 匹配方法

res=cv2.matchTemplate(image, templ, method)

image:原图像,这是一个灰度图像或彩色图像(在这种情况下,匹配将在每个通道上独立进行)。

templ:模板图像,也是灰度图像或与原图像相同通道数的彩色图像。

method:匹配方法,可以是以下之一:

cv2.TM_CCOEFF

cv2.TM_CCOEFF_NORMED

cv2.TM_CCORR

cv2.TM_CCORR_NORMED

cv2.TM_SQDIFF

cv2.TM_SQDIFF_NORMED

这些方法决定了如何度量模板图像与原图像子窗口之间的相似度。

返回值res

函数在完成图像模板匹配后返回一个结果矩阵,这个矩阵的大小与原图像相同。矩阵的每个元素表示原图像中相应位置与模板图像匹配的相似度。

匹配方法不同,返回矩阵的值的含义也会有所区别。以下是几种常用的匹配方法及其返回值含义:

  1. cv2.TM_SQDIFFcv2.TM_SQDIFF_NORMED

    返回值越接近0 ,表示匹配程度越。最小值对应的最佳匹配位置。

  2. cv2.TM_CCORRcv2.TM_CCORR_NORMED

    返回值越大 ,表示匹配程度越好。最大值对应的最佳匹配位置。

  3. cv2.TM_CCOEFFcv2.TM_CCOEFF_NORMED

    返回值越大 ,表示匹配程度越好。最大值对应的最佳匹配位置。

19.2.1 平方差匹配

cv2.TM_SQDIFF

以模板图与目标图所对应的像素值使用平方差公式来计算,其结果越小,代表匹配程度越高,计算过程举例如下。

注意:模板匹配过程皆不需要边缘填充,直接从目标图像的左上角开始计算。

19.2.2 归一化平方差匹配

cv2.TM_SQDIFF_NORMED

与平方差匹配类似,只不过需要将值统一到0到1,计算结果越小,代表匹配程度越高,计算过程举例如下。

19.2.3 相关匹配

cv2.TM_CCORR

使用对应像素的乘积进行匹配,乘积的结果越大其匹配程度越高,计算过程举例如下。

19.2.4 归一化相关匹配

cv2.TM_CCORR_NORMED

与相关匹配类似,只不过是将其值统一到0到1之间,值越大,代表匹配程度越高,计算过程举例如下。

19.2.5 相关系数匹配

cv2.TM_CCOEFF

需要先计算模板与目标图像的均值,然后通过每个像素与均值之间的差的乘积再求和来表示其匹配程度,1表示完美的匹配,-1表示最差的匹配,计算过程举例如下。

19.2.6 归一化相关系数匹配

cv2.TM_CCOEFF_NORMED

也是将相关系数匹配的结果统一到0到1之间,值越接近1代表匹配程度越高,计算过程举例如下。

19.3 绘制轮廓

找的目标图像中匹配程度最高的点,我们可以设定一个匹配阈值来筛选出多个匹配程度高的区域。

  • loc=np.where(array > 0.8) #loc包含array中所有大于0.8的元素索引的数组

np.where(condition) 是 NumPy 的一个函数,当条件为真时,返回满足条件的元素的索引。

  • zip(*loc)

    • *loc 是解包操作,将 loc 中的多个数组拆开,作为单独的参数传递给 zip

    • zip 将这些数组按元素一一配对,生成一个迭代器,每个元素是一个元组,表示一个坐标点。

复制代码
x=list([[1,2,3,4,3],[23,4,2,4,2]])
print(list(zip(*x)))#[(1, 23), (2, 4), (3, 2), (4, 4), (3, 2)]
python 复制代码
import cv2 as cv
import numpy as np

#读图
img = cv.imread('images/huoyingrenzhe.jpg')
temp = cv.imread('images/zhipai.jpg')
#转灰度
img_gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
temp_gray = cv.cvtColor(temp, cv.COLOR_BGR2GRAY)
#模板匹配,拿到匹配结果,返回匹配程度矩阵
res = cv.matchTemplate(img_gray, temp_gray, cv.TM_CCOEFF_NORMED)
#设置阈值,使用np.where()获取符合条件的坐标
threshold = 0.8
#得到[[y1,y2,y3...],[x1,x2,x3...]]
loc = np.where(res >= threshold)
h,w = temp.shape[:2]
#解包
for pt in zip(*loc[::-1]):
    cv.rectangle(img, pt, (pt[0] + w, pt[1] + h), (0, 0, 255), 2)
cv.imshow('img', img)
cv.waitKey(0)
cv.destroyAllWindows()

|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| | |

注意得到[[y1,y2,y3...],[x1,x2,x3...]]这样的返回值,因为先返回行索引再返回列索引

相关推荐
jndingxin1 天前
OpenCV图像注册模块
人工智能·opencv·计算机视觉
R-G-B1 天前
【P14 3-6 】OpenCV Python——视频加载、摄像头调用、视频基本信息获取(宽、高、帧率、总帧数)
python·opencv·视频加载·摄像头调用·获取视频基本信息·获取视频帧率·获取视频帧数
荼蘼1 天前
OpenCv(三)——图像平滑处理
人工智能·opencv·计算机视觉
Monkey PilotX1 天前
机器人“ChatGPT 时刻”倒计时
人工智能·机器学习·计算机视觉·自动驾驶
程序猿小D1 天前
【完整源码+数据集+部署教程】孔洞检测系统源码和数据集:改进yolo11-RetBlock
yolo·计算机视觉·毕业设计·数据集·yolo11·孔洞检测
图灵学术计算机论文辅导1 天前
傅里叶变换+attention机制,深耕深度学习领域
人工智能·python·深度学习·计算机网络·考研·机器学习·计算机视觉
R-G-B2 天前
OpenCV Python——报错AttributeError: module ‘cv2‘ has no attribute ‘bgsegm‘,解决办法
人工智能·python·opencv·opencv python·attributeerror·module ‘cv2‘·no attribute
Struart_R2 天前
SpatialVLM和SpatialRGPT论文解读
计算机视觉·语言模型·transformer·大语言模型·vlm·视觉理解·空间推理
似乎很简单2 天前
【opencv-Python学习笔记(5):几何变换】
笔记·opencv·学习
老艾的AI世界2 天前
AI去、穿、换装软件下载,无内容限制,偷偷收藏
图像处理·人工智能·深度学习·神经网络·目标检测·机器学习·ai·换装·虚拟试衣·ai换装·一键换装