Spark论述及其作用

(一)Spark概述

Spark是一种基于内存的快速、通用、可拓展的大数据分析计算引擎。Hadoop是一个分布式系统基础架构。

为什么我们需要Spark

它处理速快,提供了更加简洁、高层的编程模型,提供了强大的实时数据处理能力,它可以将实时数据流分割成小的批次进行处理,实现准实时的数据分析。

(三)Spark的运行模式

Spark集群大体上分为两种模式:单机模式(Local模式)与集群模式。

如果资源(cpu,内存)是当前单节点提供的,那么称之为单机模式。

如果资源(cpu,内存)是当前多节点提供的,那么称之为分布式模式。

大多数分布式框架都支持单机模式:就是运行在一台计算机上的模式,方便开发者调试框架的 运 行环境。但是在生产环境中,并不会使用单机模式。因此,后续直接按照集群模式部署Spark集群。

(四)Spark引擎特点

  1. 快速高效的计算引擎

    采用内存计算和DAG(有向无环图)优化技术,相比传统MapReduce性能提升数十倍至百倍,适用于迭代算法和实时处理。

  2. 统一的多模式处理框架

    支持批处理、实时流处理(微批及结构化流)、交互式查询、机器学习(MLlib)和图计算(GraphX),实现"一站式"大数据处理。

  3. 弹性分布式数据集(RDD)

    核心数据抽象结构,具备自动容错(通过Lineage血缘追溯)、并行处理及内存持久化能力,支持复杂数据操作。

  4. 丰富的API与开发友好性

    提供Scala、Java、Python、R等多语言API,以及高阶DataFrame/Dataset接口,简化代码编写,支持SQL、流式SQL等高级操作。

  5. 强大的生态系统与扩展性

    包含Spark SQL(结构化数据)、MLlib(机器学习)、Spark Streaming(流处理)、GraphX(图计算)等组件,无缝集成Hadoop、Hive、Kafka等工具。

  6. 灵活部署与资源管理

    可运行于独立集群、YARN、Kubernetes或Mesos,支持本地和云端环境,兼容HDFS、S3等多种存储系统,适应多样化基础设施需求。

相关推荐
敏叔V5872 小时前
联邦学习与大模型:隐私保护下的分布式模型训练与微调方案
分布式
塔能物联运维3 小时前
隧道照明“智能进化”:PLC 通信 + AI 调光守护夜间通行生命线
大数据·人工智能
highly20093 小时前
Gitflow
大数据·elasticsearch·搜索引擎
短剑重铸之日3 小时前
《7天学会Redis》特别篇: Redis分布式锁
java·redis·分布式·后端·缓存·redission·看门狗机制
humors2214 小时前
韩秀云老师谈买黄金
大数据·程序人生
重生之绝世牛码4 小时前
Linux软件安装 —— SSH免密登录
大数据·linux·运维·ssh·软件安装·免密登录
StarChainTech4 小时前
无人机租赁平台:开启智能租赁新时代
大数据·人工智能·微信小程序·小程序·无人机·软件需求
Hello.Reader4 小时前
Flink DynamoDB Connector 用 Streams 做 CDC,用 BatchWriteItem 高吞吐写回
大数据·python·flink
早日退休!!!4 小时前
内存泄露(Memory Leak)核心原理与工程实践报告
大数据·网络
发哥来了5 小时前
主流AI视频生成工具商用化能力评测:五大关键维度对比分析
大数据·人工智能·音视频