spark-streaming

DStream创建

Kafka数据源:

ReceiverAPI:需要一个专门的 Executor 去接收数据,然后发送给其他的 Executor 做计算。存在的问题,接收数据的 Executor 和计算的 Executor 速度会有所不同,特别在接收数据的 Executor速度大于计算的 Executor 速度,会导致计算数据的节点内存溢出。

DirectAPI:是由计算的 Executor 来主动消费 Kafka 的数据,速度由自身控制。

Kafka 0-10 Direct 模式

需求:通过 SparkStreaming 从 Kafka 读取数据,并将读取过来的数据做简单计算,最终打印到控制台。

导入依赖

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming-kafka-0-10_2.12</artifactId>

<version>3.0.0</version>

</dependency>

编写代码

/**

* 通过DirectAPI 0-10 消费kafka数据

* 消费的offset保存在_consumer_offsets主题中

*/

object DirectAPI {

def main(args: Array[String]): Unit = {

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("direct")

val ssc = new StreamingContext(sparkConf,Seconds(3))

//定义kafka相关参数

val kafkaPara :Map[String,Object] = Map[String,Object](ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG ->"node01:9092,node02:9092,node03:9092",

ConsumerConfig.GROUP_ID_CONFIG->"kafka",

"key.deserializer"->"org.apache.kafka.common.serialization.StringDeserializer",

"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"

)

//通过读取kafka数据,创建DStream

val kafkaDStream:InputDStream[ConsumerRecord[String,String]] = KafkaUtils.createDirectStream[String,String](

ssc,LocationStrategies.PreferConsistent,

ConsumerStrategies.Subscribe[String,String](Set("kafka"),kafkaPara)

)

//提取出数据中的value部分

val valueDStream :DStream[String] = kafkaDStream.map(record=>record.value())

//wordCount计算逻辑

valueDStream.flatMap(_.split(" "))

.map((_,1))

.reduceByKey(+)

.print()

ssc.start()

ssc.awaitTermination()

开启Kafka集群

开启Kafka生产者,产生数据

kafka-console-producer.sh --broker-list node01:9092,node02:9092,node03:9092 --topic kafka

运行程序,接收Kafka生产的数据并进行相应处理

查看消费进度

kafka-consumer-groups.sh --describe --bootstrap-server node01:9092,node02:9092,node03:9092 --group kafka

相关推荐
谅望者2 小时前
SQL WHERE 详解:10 分钟内像专家一样过滤数据
sql
谅望者2 小时前
每个初学者都会犯的 7 个 SQL 错误(以及如何纠正它们)
sql
不剪发的Tony老师2 小时前
Yearning:一个免费开源的SQL审核平台
数据库·sql·mysql
Gauss松鼠会2 小时前
GaussDB慢sql信息收集和执行计划查看
数据库·sql·gaussdb
想ai抽4 小时前
Spark的shuffle类型与对比
大数据·数据仓库·spark
繁依Fanyi5 小时前
Cloud Studio 免环境搭建创建机器学习环境并运行 Pytorch 案例
人工智能·pytorch·机器学习
忍冬行者6 小时前
Kafka 概念与部署手册
分布式·kafka
技术闲聊DD6 小时前
深度学习(10)-PyTorch 卷积神经网络
pytorch·深度学习·cnn
呼哧呼哧.15 小时前
Spring的核心思想与注解
数据库·sql·spring
FriendshipT16 小时前
目标检测:使用自己的数据集微调DEIMv2进行物体检测
人工智能·pytorch·python·目标检测·计算机视觉