spark-streaming

DStream创建

Kafka数据源:

ReceiverAPI:需要一个专门的 Executor 去接收数据,然后发送给其他的 Executor 做计算。存在的问题,接收数据的 Executor 和计算的 Executor 速度会有所不同,特别在接收数据的 Executor速度大于计算的 Executor 速度,会导致计算数据的节点内存溢出。

DirectAPI:是由计算的 Executor 来主动消费 Kafka 的数据,速度由自身控制。

Kafka 0-10 Direct 模式

需求:通过 SparkStreaming 从 Kafka 读取数据,并将读取过来的数据做简单计算,最终打印到控制台。

导入依赖

<dependency>

<groupId>org.apache.spark</groupId>

<artifactId>spark-streaming-kafka-0-10_2.12</artifactId>

<version>3.0.0</version>

</dependency>

编写代码

/**

* 通过DirectAPI 0-10 消费kafka数据

* 消费的offset保存在_consumer_offsets主题中

*/

object DirectAPI {

def main(args: Array[String]): Unit = {

val sparkConf = new SparkConf().setMaster("local[*]").setAppName("direct")

val ssc = new StreamingContext(sparkConf,Seconds(3))

//定义kafka相关参数

val kafkaPara :Map[String,Object] = Map[String,Object](ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG ->"node01:9092,node02:9092,node03:9092",

ConsumerConfig.GROUP_ID_CONFIG->"kafka",

"key.deserializer"->"org.apache.kafka.common.serialization.StringDeserializer",

"value.deserializer" -> "org.apache.kafka.common.serialization.StringDeserializer"

)

//通过读取kafka数据,创建DStream

val kafkaDStream:InputDStream[ConsumerRecord[String,String]] = KafkaUtils.createDirectStream[String,String](

ssc,LocationStrategies.PreferConsistent,

ConsumerStrategies.Subscribe[String,String](Set("kafka"),kafkaPara)

)

//提取出数据中的value部分

val valueDStream :DStream[String] = kafkaDStream.map(record=>record.value())

//wordCount计算逻辑

valueDStream.flatMap(_.split(" "))

.map((_,1))

.reduceByKey(+)

.print()

ssc.start()

ssc.awaitTermination()

开启Kafka集群

开启Kafka生产者,产生数据

kafka-console-producer.sh --broker-list node01:9092,node02:9092,node03:9092 --topic kafka

运行程序,接收Kafka生产的数据并进行相应处理

查看消费进度

kafka-consumer-groups.sh --describe --bootstrap-server node01:9092,node02:9092,node03:9092 --group kafka

相关推荐
python_chai1 小时前
从数据汇总到高级分析,SQL 查询进阶实战(下篇)—— 分组、子查询与窗口函数全攻略
数据库·sql·mysql
纪莫4 小时前
Kafka如何保证「消息不丢失」,「顺序传输」,「不重复消费」,以及为什么会发送重平衡(reblanace)
kafka
Caven775 小时前
【pytorch】reshape的使用
pytorch·python
无规则ai5 小时前
动手学深度学习(pytorch版):第四章节—多层感知机(5)权重衰减
人工智能·pytorch·python·深度学习
晴天彩虹雨6 小时前
存算分离与云原生:数据平台的新基石
大数据·hadoop·云原生·spark
yatingliu20197 小时前
HiveQL | 个人学习笔记
hive·笔记·sql·学习
更深兼春远8 小时前
spark+scala安装部署
大数据·spark·scala
BD_Marathon8 小时前
Kafka文件存储机制
分布式·kafka
雷达学弱狗8 小时前
backward怎么计算的是torch.tensor(2.0, requires_grad=True)变量的梯度
人工智能·pytorch·深度学习
染落林间色9 小时前
达梦数据库-实时主备集群部署详解(附图文)手工搭建一主一备数据守护集群DW
数据库·sql