使用 Python 项目管理工具 uv 快速创建 MCP 服务(Cherry Studio、Trae 添加 MCP 服务)

文章目录

  • 下载Trae
  • [uv 工具教程参考我的这篇文章](#uv 工具教程参考我的这篇文章)
  • [创建 uv 项目](#创建 uv 项目)
  • main.py
  • [Cherry Studio 添加 MCP 服务](#Cherry Studio 添加 MCP 服务)
    • [DeepSeek API](#DeepSeek API)
    • [配置 DeepSeek API](#配置 DeepSeek API)
    • [调用 MCP 服务](#调用 MCP 服务)
  • [Trae 添加 MCP 服务](#Trae 添加 MCP 服务)
  • 使用智能体
    • [调用 MCP 创建 demo 表](#调用 MCP 创建 demo 表)
    • [查询 demo 表结构信息](#查询 demo 表结构信息)
    • [demo 表插入 2 条测试数据](#demo 表插入 2 条测试数据)
    • [查询 demo 表中的数据](#查询 demo 表中的数据)

下载Trae

uv 工具教程参考我的这篇文章

创建 uv 项目

bash 复制代码
uv init demo
cd demo
  • 添加依赖项
bash 复制代码
uv add 'mcp[cli]'

main.py

python 复制代码
import asyncio
import argparse
import sqlite3
import logging
from contextlib import closing
from pathlib import Path
from pydantic import AnyUrl
from typing import Any

from mcp.server import InitializationOptions
from mcp.server.lowlevel import Server, NotificationOptions
from mcp.server.stdio import stdio_server
import mcp.types as types

logger = logging.getLogger('mcp_sqlite_server')
logger.info("Starting MCP SQLite Server")

class SqliteDatabase:
    def __init__(self, db_path: str):
        self.db_path = str(Path(db_path).expanduser())
        Path(self.db_path).parent.mkdir(parents=True, exist_ok=True)
        self._init_database()
        self.insights: list[str] = []

    def _init_database(self):
        """Initialize connection to the SQLite database"""
        logger.debug("Initializing database connection")
        with closing(sqlite3.connect(self.db_path)) as conn:
            conn.row_factory = sqlite3.Row
            conn.close()

    def _synthesize_memo(self) -> str:
        """Synthesizes business insights into a formatted memo"""
        logger.debug(f"Synthesizing memo with {len(self.insights)} insights")
        if not self.insights:
            return "No business insights have been discovered yet."

        insights = "\n".join(f"- {insight}" for insight in self.insights)

        memo = "📊 Business Intelligence Memo 📊\n\n"
        memo += "Key Insights Discovered:\n\n"
        memo += insights

        if len(self.insights) > 1:
            memo += "\nSummary:\n"
            memo += f"Analysis has revealed {len(self.insights)} key business insights that suggest opportunities for strategic optimization and growth."

        logger.debug("Generated basic memo format")
        return memo

    def _execute_query(self, query: str, params: dict[str, Any] | None = None) -> list[dict[str, Any]]:
        """Execute a SQL query and return results as a list of dictionaries"""
        logger.debug(f"Executing query: {query}")
        try:
            with closing(sqlite3.connect(self.db_path)) as conn:
                conn.row_factory = sqlite3.Row
                with closing(conn.cursor()) as cursor:
                    if params:
                        cursor.execute(query, params)
                    else:
                        cursor.execute(query)

                    if query.strip().upper().startswith(('INSERT', 'UPDATE', 'DELETE', 'CREATE', 'DROP', 'ALTER')):
                        conn.commit()
                        affected = cursor.rowcount
                        logger.debug(f"Write query affected {affected} rows")
                        return [{"affected_rows": affected}]

                    results = [dict(row) for row in cursor.fetchall()]
                    logger.debug(f"Read query returned {len(results)} rows")
                    return results
        except Exception as e:
            logger.error(f"Database error executing query: {e}")
            raise

async def main(db_path: str):
    logger.info(f"Starting SQLite MCP Server with DB path: {db_path}")

    db = SqliteDatabase(db_path)
    server = Server("sqlite-manager")

    logger.debug("Registering handlers")

    @server.list_resources()
    async def handle_list_resources() -> list[types.Resource]:
        logger.debug("Handling list_resources request")
        return [
            types.Resource(
                uri=AnyUrl("memo://insights"),
                name="Business Insights Memo",
                description="A living document of discovered business insights",
                mimeType="text/plain",
            )
        ]
    
    @server.read_resource()
    async def handle_read_resource(uri: AnyUrl) -> str:
        logger.debug(f"Handling read_resource request for URI: {uri}")
        if uri.scheme != "memo":
            logger.error(f"Unsupported URI scheme: {uri.scheme}")
            raise ValueError(f"Unsupported URI scheme: {uri.scheme}")

        path = str(uri).replace("memo://", "")
        if not path or path != "insights":
            logger.error(f"Unknown resource path: {path}")
            raise ValueError(f"Unknown resource path: {path}")

        return db._synthesize_memo()
    
    @server.list_tools()
    async def handle_list_tools() -> list[types.Tool]:
        """List available tools"""
        return [
            types.Tool(
                name="read_query",
                description="Execute a SELECT query on the SQLite database",
                inputSchema={
                    "type": "object",
                    "properties": {
                        "query": {"type": "string", "description": "SELECT SQL query to execute"},
                    },
                    "required": ["query"],
                },
            ),
            types.Tool(
                name="write_query",
                description="Execute an INSERT, UPDATE, or DELETE query on the SQLite database",
                inputSchema={
                    "type": "object",
                    "properties": {
                        "query": {"type": "string", "description": "SQL query to execute"},
                    },
                    "required": ["query"],
                },
            ),
            types.Tool(
                name="create_table",
                description="Create a new table in the SQLite database",
                inputSchema={
                    "type": "object",
                    "properties": {
                        "query": {"type": "string", "description": "CREATE TABLE SQL statement"},
                    },
                    "required": ["query"],
                },
            ),
            types.Tool(
                name="list_tables",
                description="List all tables in the SQLite database",
                inputSchema={
                    "type": "object",
                    "properties": {},
                },
            ),
            types.Tool(
                name="describe_table",
                description="Get the schema information for a specific table",
                inputSchema={
                    "type": "object",
                    "properties": {
                        "table_name": {"type": "string", "description": "Name of the table to describe"},
                    },
                    "required": ["table_name"],
                },
            ),
            types.Tool(
                name="append_insight",
                description="Add a business insight to the memo",
                inputSchema={
                    "type": "object",
                    "properties": {
                        "insight": {"type": "string", "description": "Business insight discovered from data analysis"},
                    },
                    "required": ["insight"],
                },
            ),
        ]

    @server.call_tool()
    async def handle_call_tool(
        name: str, arguments: dict[str, Any] | None
    ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:
        """Handle tool execution requests"""
        try:
            if name == "list_tables":
                results = db._execute_query(
                    "SELECT name FROM sqlite_master WHERE type='table'"
                )
                return [types.TextContent(type="text", text=str(results))]

            elif name == "describe_table":
                if not arguments or "table_name" not in arguments:
                    raise ValueError("Missing table_name argument")
                results = db._execute_query(
                    f"PRAGMA table_info({arguments['table_name']})"
                )
                return [types.TextContent(type="text", text=str(results))]

            elif name == "append_insight":
                if not arguments or "insight" not in arguments:
                    raise ValueError("Missing insight argument")

                db.insights.append(arguments["insight"])
                _ = db._synthesize_memo()

                # Notify clients that the memo resource has changed
                await server.request_context.session.send_resource_updated(AnyUrl("memo://insights"))

                return [types.TextContent(type="text", text="Insight added to memo")]

            if not arguments:
                raise ValueError("Missing arguments")

            if name == "read_query":
                if not arguments["query"].strip().upper().startswith("SELECT"):
                    raise ValueError("Only SELECT queries are allowed for read_query")
                results = db._execute_query(arguments["query"])
                return [types.TextContent(type="text", text=str(results))]

            elif name == "write_query":
                if arguments["query"].strip().upper().startswith("SELECT"):
                    raise ValueError("SELECT queries are not allowed for write_query")
                results = db._execute_query(arguments["query"])
                return [types.TextContent(type="text", text=str(results))]

            elif name == "create_table":
                if not arguments["query"].strip().upper().startswith("CREATE TABLE"):
                    raise ValueError("Only CREATE TABLE statements are allowed")
                db._execute_query(arguments["query"])
                return [types.TextContent(type="text", text="Table created successfully")]

            else:
                raise ValueError(f"Unknown tool: {name}")

        except sqlite3.Error as e:
            return [types.TextContent(type="text", text=f"Database error: {str(e)}")]
        except Exception as e:
            return [types.TextContent(type="text", text=f"Error: {str(e)}")]

    async with stdio_server() as (read_stream, write_stream):
        logger.info("Server running with stdio transport")
        await server.run(
            read_stream,
            write_stream,
            InitializationOptions(
                server_name="sqlite",
                server_version="0.1.0",
                capabilities=server.get_capabilities(
                    notification_options=NotificationOptions(),
                    experimental_capabilities={},
                ),
            ),
        )

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='SQLite MCP Server')
    parser.add_argument('--db-path', default="./sqlite_mcp_server.db", help='Path to SQLite database file')
    args = parser.parse_args()
    asyncio.run(main(args.db_path))

Cherry Studio 添加 MCP 服务

bash 复制代码
--directory
~/TraeProjects/demo
run
main.py
--db-path
~/TraeProjects/demo/test.db


DeepSeek API

配置 DeepSeek API

调用 MCP 服务


Trae 添加 MCP 服务

添加 MCP

json 复制代码
{
  "mcpServers": {
    "sqlite-server": {
      "command": "uv",
      "args": [
        "--directory",
        "~/TraeProjects/demo",
        "run",
        "main.py",
        "--db-path",
        "~/TraeProjects/demo/test.db"
      ]
    }
  }
}


创建智能体

使用智能体

调用 MCP 创建 demo 表

查询 demo 表结构信息

demo 表插入 2 条测试数据

查询 demo 表中的数据

相关推荐
喵手9 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_944934739 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
helloworldandy9 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
肖永威11 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos
TechWJ11 小时前
PyPTO编程范式深度解读:让NPU开发像写Python一样简单
开发语言·python·cann·pypto
枷锁—sha11 小时前
【SRC】SQL注入WAF 绕过应对策略(二)
网络·数据库·python·sql·安全·网络安全
abluckyboy11 小时前
Java 实现求 n 的 n^n 次方的最后一位数字
java·python·算法
喵手12 小时前
Python爬虫实战:构建各地统计局数据发布板块的自动化索引爬虫(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集数据csv导出·采集各地统计局数据发布数据·统计局数据采集
天天爱吃肉821812 小时前
跟着创意天才周杰伦学新能源汽车研发测试!3年从工程师到领域专家的成长秘籍!
数据库·python·算法·分类·汽车
m0_7155753413 小时前
使用PyTorch构建你的第一个神经网络
jvm·数据库·python