一、架构设计调整
核心组件替换方案:
1、注册中心
→ 数据库注册表
2、任务队列
→ 数据库任务表
3、分布式锁
→ 数据库行级锁
4、节点通信
→ HTTP REST接口
二、数据库表结构设计
java
节点注册表
CREATETABLE compute_nodes (
node_id VARCHAR(36)PRIMARYKEY,
last_heartbeat TIMESTAMP,
statusENUM('ACTIVE','DOWN')
);
java
-- 任务分片表
CREATETABLE task_shards (
shard_id INTAUTO_INCREMENTPRIMARYKEY,
data_range VARCHAR(100),-- 例如:1-10000
statusENUM('PENDING','PROCESSING','COMPLETED'),
locked_by VARCHAR(36),
locked_at TIMESTAMP
);
三、核心实现代码
1. 节点自注册实现
java
@Scheduled(fixedRate =3000)
public void nodeRegistration(){
jdbcTemplate.update(
"INSERT INTO compute_nodes VALUES (?, NOW(), 'ACTIVE') "+
"ON DUPLICATE KEY UPDATE last_heartbeat = NOW()",
nodeId
);
// 清理过期节点
jdbcTemplate.update(
"DELETE FROM compute_nodes WHERE last_heartbeat < ?",
LocalDateTime.now().minusSeconds(10)
);
}
2. 任务分片抢占式调度
java
@Scheduled(fixedDelay =1000)
public void acquireTasks(){
List<Long> shardIds = jdbcTemplate.queryForList(
"SELECT shard_id FROM task_shards "+
"WHERE status = 'PENDING' "+
"ORDER BY shard_id LIMIT 5 FOR UPDATE SKIP LOCKED",
Long.class
);
shardIds.forEach(shardId ->{
int updated = jdbcTemplate.update(
"UPDATE task_shards SET status = 'PROCESSING', "+
"locked_by = ?, locked_at = NOW() "+
"WHERE shard_id = ? AND status = 'PENDING'",
nodeId, shardId
);
if(updated >0) processShard(shardId);
});
}
3. Map阶段分布式处理
java
public void processShard(Long shardId){
try{
DataRange range =getDataRange(shardId);
List<Record> records =fetchData(range);
Map<String, Double> partialResult = records.parallelStream()
.collect(Collectors.groupingBy(
Record::getCategory,
Collectors.summingDouble(Record::getAmount)
));
saveResult(shardId, partialResult);
markShardCompleted(shardId);
}catch(Exception e){
releaseShard(shardId);
}
}
4. Reduce阶段聚合实现
java
public Map<String, Double> reduceAllResults(){
return jdbcTemplate.query(
"SELECT category, SUM(amount) AS total "+
"FROM map_results GROUP BY category",
(rs, rowNum)->newAbstractMap.SimpleEntry<>(
rs.getString("category"),
rs.getDouble("total")
)).stream().collect(Collectors.toMap(
Entry::getKey,Entry::getValue
));
}
四、关键优化点
1. 分片锁优化策略
java
// 使用乐观锁避免长时间占用连接
public boolean tryLockShard(Long shardId) {
return jdbcTemplate.update(
"UPDATE task_shards SET version = version + 1 " +
"WHERE shard_id = ? AND version = ?",
shardId, currentVersion) > 0;
}
2. 结果缓存优化
java
@Cacheable(value ="partialResults", key ="#shardId")
public Map<String, Double> getPartialResult(Long shardId){
return jdbcTemplate.query(...);
}
// 配置类启用缓存
@Configuration
@EnableCaching
publicclassCacheConfig{
@Bean
public CacheManagercacheManager(){
return new ConcurrentMapCacheManager();
}
}
3. 分布式事务处理
java
@Transactional(propagation = Propagation.REQUIRES_NEW)
public void markShardCompleted(Long shardId) {
jdbcTemplate.update(
"UPDATE task_shards SET status = 'COMPLETED' " +
"WHERE shard_id = ?", shardId);
eventPublisher.publishEvent(
new ShardCompleteEvent(shardId));
}
五、部署架构对比

六、性能压测数据
测试环境:
100w数据
七、生产级改进建议
分片策略优化
java
// 采用跳跃哈希算法避免热点
public List<Long> assignShards(int totalShards) {
return IntStream.range(0, totalShards)
.mapToObj(i -> (nodeHash + i*2654435761L) % totalShards)
.collect(Collectors.toList());
}
动态分片扩容
java
@Scheduled(fixedRate =60000)
public void autoReshard(){
int currentShards = getCurrentShardCount();
int required = calculateRequiredShards();
if(required > currentShards){
jdbcTemplate.execute("ALTER TABLE task_shards AUTO_INCREMENT = "+ required);
}
}
结果校验机制
java
public void validateResults() {
jdbcTemplate.query("SELECT shard_id FROM task_shards WHERE status = 'COMPLETED'",
rs -> {
Long shardId = rs.getLong(1);
if(!resultCache.contains(shardId)) {
repairShard(shardId);
}
});
}
该方案完全基于SpringBoot原生能力实现,通过关系型数据库+定时任务调度机制,在保持系统简洁性的同时满足基本分布式计算需求。适合中小规模(日处理千万级以下)的离线计算场景,如需更高性能建议仍考虑引入专业分布式计算框架。