深度学习3.7 softmax回归的简洁实现

python 复制代码
import torch
from torch import nn
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

3.7.1 初始化模型参数

python 复制代码
net = nn.Sequential(nn.Flatten(), nn.Linear(784, 10))

def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.normal_(m.weight, std=0.01)

net.apply(init_weights);

3.7.2 重新审视Softmax的实现

python 复制代码
loss = nn.CrossEntropyLoss(reduction='none')

3.7.3 优化算法

python 复制代码
# 在这里,我们(使用学习率为0.1的小批量随机梯度下降作为优化算法)
trainer = torch.optim.SGD(net.parameters(), lr=0.1)

3.7.4 训练

python 复制代码
num_epochs = 10
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, trainer)

3.7.5 预测

python 复制代码
batch_size = 256 #迭代器批量
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)

def predict_ch3(net, test_iter, n=6):  
    """Predict labels (defined in Chapter 3)."""
    for X, y in test_iter:  # 获取第一批测试数据
        break
    trues = d2l.get_fashion_mnist_labels(y)  # 真实标签转文本
    preds = d2l.get_fashion_mnist_labels(d2l.argmax(net(X), axis=1))  # 预测标签转文本
    titles = [true +'\n' + pred for true, pred in zip(trues, preds)]  # 组合标签
    d2l.show_images(d2l.reshape(X[0:n], (n, 28, 28)), 1, n, titles=titles[0:n])  # 可视化

predict_ch3(net, test_iter)
相关推荐
九章云极AladdinEdu1 小时前
临床数据挖掘与分析:利用GPU加速Pandas和Scikit-learn处理大规模数据集
人工智能·pytorch·数据挖掘·pandas·scikit-learn·paddlepaddle·gpu算力
上海锝秉工控1 小时前
超声波风向传感器:以科技之翼,捕捉风的每一次呼吸
大数据·人工智能·科技
说私域1 小时前
基于开源AI智能名片、链动2+1模式与S2B2C商城小程序的流量运营与个人IP构建研究
人工智能·小程序·流量运营
xiaoxiaoxiaolll3 小时前
期刊速递 | 《Light Sci. Appl.》超宽带光热电机理研究,推动碳纳米管传感器在制药质控中的实际应用
人工智能·学习
练习两年半的工程师3 小时前
AWS TechFest 2025: 风险模型的转变、流程设计的转型、生成式 AI 从实验走向实施的三大关键要素、评估生成式 AI 用例的适配度
人工智能·科技·金融·aws
Elastic 中国社区官方博客5 小时前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
stbomei5 小时前
从“能说话”到“会做事”:AI Agent如何重构日常工作流?
人工智能
yzx9910136 小时前
生活在数字世界:一份人人都能看懂的网络安全生存指南
运维·开发语言·网络·人工智能·自动化
许泽宇的技术分享7 小时前
LangGraph深度解析:构建下一代智能Agent的架构革命——从Pregel到现代AI工作流的技术飞跃
人工智能·架构
乔巴先生247 小时前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互