大模型对话风格微调项目实战——部署上线篇

大模型对话风格微调项目实战------部署上线篇

目录

  1. 背景介绍
  2. 本文的任务
  3. 部署模型到本地服务器
  4. 开发Web应用
  5. 总结

背景介绍

本文是《大模型对话风格微调项目实战》的最后一篇文章,主要介绍如何将微调后的模型部署上线,为用户提供服务。

本文的任务

  • 部署模型到本地服务器
  • 开发一个简单的Web应用,用户可以通过Web界面与模型进行对话

部署模型到本地服务器

部署框架选择

在部署模型到本地服务器之前,我们需要选择一个合适的部署框架。目前比较流行的部署框架有:

  • vLLM
  • Ollama
  • LMDeploy

框架的选择需要根据实际情况进行选择,本文选择vLLM作为部署框架。

安装vLLM

bash 复制代码
conda create -n vllm python=3.10 -y
conda activate vllm
pip install vllm

启动vLLM服务器

bash 复制代码
vllm serve \
    /mnt/model/Qwen/Qwen2___5-1___5B-Instruct_Merge

开发Web应用

开发框架选择

前端开发是一个复杂的系统工程,考虑到本文的目的,我们不展开讨论,而是选择一个简单的前端框架进行效果演示:Streamlit。

安装Streamlit

bash 复制代码
conda create -n streamlit python=3.10 -y
conda activate streamlit
pip install streamlit

开发Web应用

下面是一个简单的Web应用,用户可以通过Web界面与模型进行对话。

python 复制代码
import streamlit as st
from openai import OpenAI

# 初始化客户端
client = OpenAI(base_url="http://localhost:8000/v1/", api_key="_")

# 设置页面标题
st.title("效果演示")

# 初始化session状态(仅用于显示历史)
if "messages" not in st.session_state:
    st.session_state.messages = []

# 显示历史消息
for message in st.session_state.messages:
    with st.chat_message(message["role"]):
        st.markdown(message["content"])

# 获取用户输入
if prompt := st.chat_input("请输入您的问题,或输入exit退出"):
    # 处理退出命令
    if prompt.lower() == "exit":
        st.info("退出对话。")
        st.stop()
    
    # 添加用户消息到显示历史
    st.session_state.messages.append({"role": "user", "content": prompt})
    with st.chat_message("user"):
        st.markdown(prompt)

    try:
        # 发起API请求(每次只发送当前消息)
        response = client.chat.completions.create(
            messages=[{"role": "user", "content": prompt}],  # 每次只发送当前问题
            model="/mnt/model/Qwen/Qwen2___5-1___5B-Instruct_Merge"
        )
        
        # 获取模型回复
        model_response = response.choices[0].message.content
        
        # 添加AI回复到显示历史
        st.session_state.messages.append({"role": "assistant", "content": model_response})
        with st.chat_message("assistant"):
            st.markdown(model_response)

    except Exception as e:
        st.error(f"发生错误:{e}")

运行Web应用

将上面的代码保存为chat_app.py,然后在终端中运行:

bash 复制代码
streamlit run .\chat_app.py

效果演示

总结

本项目完整实现了从数据收集、模型微调到部署上线的全流程。通过LCCC数据集和GLM-4生成多样化风格数据,使用XTuner框架对Qwen2.5-1.5B模型进行QLoRA微调,最终采用vLLM高效部署并集成Streamlit构建Web应用。实践表明:

  1. 微调后的模型能稳定输出指定风格(温柔/毒舌)
  2. 本地部署方案显著降低API调用成本
  3. 轻量级Web界面提供良好的用户体验 未来可扩展支持更多对话风格,并优化推理性能。本项目为对话风格定制提供了完整的技术方案参考。
相关推荐
love530love5 分钟前
Windows避坑部署CosyVoice多语言大语言模型
人工智能·windows·python·语言模型·自然语言处理·pycharm
985小水博一枚呀40 分钟前
【AI大模型学习路线】第二阶段之RAG基础与架构——第七章(【项目实战】基于RAG的PDF文档助手)技术方案与架构设计?
人工智能·学习·语言模型·架构·大模型
白熊1881 小时前
【图像生成大模型】Wan2.1:下一代开源大规模视频生成模型
人工智能·计算机视觉·开源·文生图·音视频
weixin_514548891 小时前
一种开源的高斯泼溅实现库——gsplat: An Open-Source Library for Gaussian Splatting
人工智能·计算机视觉·3d
四口鲸鱼爱吃盐1 小时前
BMVC2023 | 多样化高层特征以提升对抗迁移性
人工智能·深度学习·cnn·vit·对抗攻击·迁移攻击
Echo``2 小时前
3:OpenCV—视频播放
图像处理·人工智能·opencv·算法·机器学习·视觉检测·音视频
Douglassssssss2 小时前
【深度学习】使用块的网络(VGG)
网络·人工智能·深度学习
okok__TXF2 小时前
SpringBoot3+AI
java·人工智能·spring
SAP工博科技2 小时前
如何提升新加坡SAP实施成功率?解答中企出海的“税务合规密码” | 工博科技SAP金牌服务商
人工智能·科技·制造
闭月之泪舞2 小时前
OpenCv高阶(八)——摄像头调用、摄像头OCR
人工智能·opencv·ocr