解释PyTorch中的广播机制

广播(Broadcasting)是PyTorch和其他数值计算库中的一个重要机制,它允许不同形状的张量进行算术运算。在您提供的例子中:

广播机制的工作原理

当两个形状不同的张量进行算术运算时,PyTorch会尝试将它们扩展到兼容的形状,而不需要实际复制数据。广播遵循以下规则:

  1. 从尾部维度开始比较两个张量的形状
  2. 如果对应维度相等或其中一个维度为1,则兼容
  3. 如果一个张量的维度更少,则在前面添加尺寸为1的维度

您例子中的广播过程

在您的例子中:

  • img_size 形状为 (1, 1, 2)
  • landmarks 形状为 (1, 478, 2)

广播时发生的变化:

  • 第一个维度:1 = 1(兼容)
  • 第二个维度:1 < 478(img_size被广播到478)
  • 第三个维度:2 = 2(兼容)

实际执行时,PyTorch会"假装"img_size的形状是(1, 478, 2),将单个(1, 1, 2)值复制到所有478个关键点位置,而不实际分配更多内存。

计算效果

  • 对于每个关键点坐标landmarks[0, i, :](归一化到[0,1]范围)
  • 乘以对应的图像尺寸img_size[0, 0, :](像素值,如[256, 256])
  • 结果:所有坐标从归一化值转换为实际像素坐标

这比手动循环每个坐标点进行缩放要高效得多,充分利用了PyTorch的向量化计算能力。

相关推荐
230万光年的思念3 分钟前
【无标题】
python
shengli7228 分钟前
机器学习与人工智能
jvm·数据库·python
jay神14 分钟前
基于YOLOv8的木材表面缺陷检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
2301_7657031417 分钟前
Python迭代器(Iterator)揭秘:for循环背后的故事
jvm·数据库·python
交通上的硅基思维21 分钟前
人工智能安全:风险、机制与治理框架研究
人工智能·安全·百度
老百姓懂点AI24 分钟前
[测试工程] 告别“玄学”评测:智能体来了(西南总部)基于AI agent指挥官的自动化Eval框架与AI调度官的回归测试
运维·人工智能·自动化
2501_9481201528 分钟前
基于量化感知训练的大语言模型压缩方法
人工智能·语言模型·自然语言处理
songyuc31 分钟前
【Llava】load_pretrained_model() 说明
人工智能·深度学习
MARS_AI_32 分钟前
大模型赋能客户沟通,云蝠大模型呼叫实现问题解决全链路闭环
人工智能·自然语言处理·信息与通信·agi
追风少年ii36 分钟前
多组学扩展---分子对接pyrosetta
python·数据分析·空间·单细胞