解释PyTorch中的广播机制

广播(Broadcasting)是PyTorch和其他数值计算库中的一个重要机制,它允许不同形状的张量进行算术运算。在您提供的例子中:

广播机制的工作原理

当两个形状不同的张量进行算术运算时,PyTorch会尝试将它们扩展到兼容的形状,而不需要实际复制数据。广播遵循以下规则:

  1. 从尾部维度开始比较两个张量的形状
  2. 如果对应维度相等或其中一个维度为1,则兼容
  3. 如果一个张量的维度更少,则在前面添加尺寸为1的维度

您例子中的广播过程

在您的例子中:

  • img_size 形状为 (1, 1, 2)
  • landmarks 形状为 (1, 478, 2)

广播时发生的变化:

  • 第一个维度:1 = 1(兼容)
  • 第二个维度:1 < 478(img_size被广播到478)
  • 第三个维度:2 = 2(兼容)

实际执行时,PyTorch会"假装"img_size的形状是(1, 478, 2),将单个(1, 1, 2)值复制到所有478个关键点位置,而不实际分配更多内存。

计算效果

  • 对于每个关键点坐标landmarks[0, i, :](归一化到[0,1]范围)
  • 乘以对应的图像尺寸img_size[0, 0, :](像素值,如[256, 256])
  • 结果:所有坐标从归一化值转换为实际像素坐标

这比手动循环每个坐标点进行缩放要高效得多,充分利用了PyTorch的向量化计算能力。

相关推荐
晚霞apple35 分钟前
三维重建技术的未来创新方向
论文阅读·人工智能·深度学习·神经网络·机器学习
NocoBase42 分钟前
GitHub 上最值得关注的 14 个开源 AI 低代码工具
人工智能·低代码·github
无风听海1 小时前
神经网络之语义空间
人工智能·深度学习·神经网络
cxr8281 小时前
AI提示工程第一性原理:精通原子提示,激发语言模型的基本单位
人工智能·语言模型·自然语言处理
X.AI6662 小时前
YouTube评论情感分析项目84%正确率:基于BERT的实战复现与原理解析
人工智能·深度学习·bert
Python×CATIA工业智造2 小时前
Pycatia二次开发基础代码解析:组件识别、选择反转与链接创建技术解析
python·pycharm
艾莉丝努力练剑2 小时前
【C++:继承】面向对象编程精要:C++继承机制深度解析与最佳实践
开发语言·c++·人工智能·继承·c++进阶
小宁爱Python2 小时前
从零搭建 RAG 智能问答系统 6:Text2SQL 与工作流实现数据库查询
数据库·人工智能·python·django
Hard_Liquor2 小时前
Datawhale秋训营-“大运河杯”数据开发应用创新大赛
人工智能·深度学习·算法
m0_748241232 小时前
Java注解与反射实现日志与校验
java·开发语言·python