Kafka与Spark-Streaming:大数据处理的黄金搭档

Kafka是分布式消息系统,最初由LinkedIn开发,后成为Apache项目。它就像个数据篮子,生产者把数据(鸡蛋)放进去,消费者从中取数据。Kafka优势明显,分布式架构让它易于扩展;高吞吐量和低延迟,每秒能处理几十万条消息,延迟仅几毫秒;消息持久化到磁盘,还支持备份,保证数据不丢失;并且支持多订阅者,故障时能自动平衡消费者。它有多种角色,如Broker、Topic、Partition等,共同保障系统运行。安装Kafka前需先安装JDK和Zookeeper,之后按步骤下载、解压、配置,就能启动集群。通过命令行工具,能轻松完成创建、查看、删除Topic,生产和消费数据等操作。

Spark-Streaming是Spark核心API的扩展,用于实时流数据处理。它把流数据切分成小批次,按批处理,对每个批次的处理就像操作RDD一样。其中,DStream是关键抽象,支持多种转换操作。无状态转化操作作用于每个批次的RDD,像 reduceByKey() 能归约单个批次内数据; transform() 可执行任意RDD-to-RDD函数,方便扩展Spark API;两个DStream还能通过 join 操作进行关联计算。

当Kafka和Spark-Streaming整合时,威力巨大。通过导入相关依赖,配置Kafka参数,就能从Kafka主题中获取数据进行实时处理。比如统计消息出现次数,还能利用Redis维护偏移量,确保数据不丢失、不重复处理。在实际应用中,它们常用于实时监控、日志处理、电商数据分析等场景,助力企业实时决策、优化业务。

相关推荐
今天没有盐20 小时前
Scala Map集合完全指南:从入门到实战应用
后端·scala·编程语言
2501_941142132 天前
前端高性能优化与微前端架构设计在大型互联网系统中的实践经验分享
kafka
20岁30年经验的码农2 天前
Kafka 消息中间件实战指南
分布式·kafka·linq
yumgpkpm2 天前
腾讯云TBDS与CDH迁移常见问题有哪些?建议由CDH迁移到CMP 7.13 平台(类Cloudera CDP,如华为鲲鹏 ARM 版)
hive·hadoop·zookeeper·flink·spark·kafka·hbase
BD_Marathon2 天前
sbt 编译打包 scala
开发语言·后端·scala
92742 天前
26 trait-多继承详解
scala
2501_941142132 天前
基于 Kotlin 构建移动端高并发后台服务与实时数据同步系统的架构设计与工程实践分享
kafka
yumgpkpm3 天前
数据可视化AI、BI工具,开源适配 Cloudera CMP 7.3(或类 CDP 的 CMP 7.13 平台,如华为鲲鹏 ARM 版)值得推荐?
人工智能·hive·hadoop·信息可视化·kafka·开源·hbase
Zhao·o3 天前
KafkaMQ采集指标日志
运维·中间件·kafka
青靴3 天前
轻量级 CI/CD 实战(三):Kafka消费者Docker容器化部署
分布式·docker·kafka