Apache Spark 源码解析

Apache Spark 是一个开源的分布式计算系统,提供了高效的大规模数据处理能力。下面我将对 Spark 的核心源码结构进行解析。

核心架构

Spark 的主要代码模块包括:

  1. Core (核心模块)

    • 包含 Spark 的基本功能,如任务调度、内存管理、错误恢复等

    • 最重要的类是 SparkContext,它是 Spark 功能的入口点

  2. SQL

    • 提供结构化数据处理功能

    • 包含 DataFrame 和 Dataset API 的实现

  3. Streaming

    • 实时流处理功能

    • 基于微批处理模型

  4. MLlib

    • 机器学习库

    • 包含常见的机器学习算法

  5. GraphX

    • 图计算库

    • 提供图处理功能

核心类解析

1. SparkContext

SparkContext 是 Spark 功能的入口点,位于 org.apache.spark 包中。主要功能包括:

  • 连接到 Spark 集群

  • 创建 RDDs (弹性分布式数据集)

  • 广播变量

  • 累加器

复制代码
class SparkContext(config: SparkConf) extends Logging {
  // 初始化各种组件
  private var _conf: SparkConf = _
  private var _env: SparkEnv = _
  private var _schedulerBackend: SchedulerBackend = _
  private var _taskScheduler: TaskScheduler = _
  private var _dagScheduler: DAGScheduler = _
  // ... 其他重要字段和方法
}

2. RDD (弹性分布式数据集)

RDD 是 Spark 的核心抽象,位于 org.apache.spark.rdd 包中。关键特性:

  • 不可变

  • 分区

  • 容错

复制代码
abstract class RDD[T: ClassTag](
    @transient private var _sc: SparkContext,
    @transient private var deps: Seq[Dependency[_]]
  ) extends Serializable with Logging {
  
  // 必须由子类实现的抽象方法
  def compute(split: Partition, context: TaskContext): Iterator[T]
  protected def getPartitions: Array[Partition]
  
  // 常用转换操作
  def map[U: ClassTag](f: T => U): RDD[U] = new MapPartitionsRDD[U, T](this, ...)
  def filter(f: T => Boolean): RDD[T] = new MapPartitionsRDD[T, T](this, ...)
  // ... 其他方法
}

3. DAGScheduler

负责将作业分解为多个阶段(stage),位于 org.apache.spark.scheduler 包中。

复制代码
private[spark] class DAGScheduler(
    private[scheduler] val sc: SparkContext,
    private[scheduler] val taskScheduler: TaskScheduler,
    // ... 其他参数
  ) extends Logging {
  
  def submitJob[T, U](
      rdd: RDD[T],
      func: (TaskContext, Iterator[T]) => U,
      // ... 其他参数
    ): JobWaiter[U] = {
    // 提交作业逻辑
  }
  
  // ... 其他重要方法
}

执行流程

  1. 用户程序 创建 SparkContext 和 RDDs

  2. DAGScheduler将 RDD 操作转换为有向无环图(DAG)

  3. TaskScheduler将任务分发给集群执行

  4. Worker节点执行任务并将结果返回

关键设计模式

  1. 惰性求值:转换操作(如map、filter)不会立即执行,只有在遇到行动操作(如collect、count)时才触发计算

  2. 血统(Lineage):RDD 通过记录其血统信息来实现容错

  3. 内存缓存:RDD 可以被缓存到内存中以加速重复访问

如何阅读源码

  1. SparkContext 开始,了解初始化过程

  2. 研究 RDD 的转换和行动操作

  3. 跟踪一个简单作业(如 sc.parallelize(1 to 10).map(_ * 2).collect())的执行路径

  4. 了解调度器和执行器的交互

Spark 源码规模庞大,建议从核心模块开始,逐步扩展到其他组件。

相关推荐
zgl_200537795 小时前
ZGLanguage 解析SQL数据血缘 之 Python + Echarts 显示SQL结构图
大数据·数据库·数据仓库·hadoop·sql·代码规范·源代码管理
潘达斯奈基~6 小时前
万字详解Flink基础知识
大数据·flink
zandy10119 小时前
从 Workflow 到 Agent 模式!衡石多智能体协同架构,重新定义智能 BI 底层逻辑
大数据·信息可视化·架构
Elastic 中国社区官方博客9 小时前
Elastic:DevRel 通讯 — 2026 年 1 月
大数据·数据库·人工智能·elasticsearch·搜索引擎·ai·全文检索
萤丰信息10 小时前
从 “钢筋水泥” 到 “数字神经元”:北京 AI 原点社区重构城市进化新逻辑
java·大数据·人工智能·安全·重构·智慧城市·智慧园区
驾数者11 小时前
Flink SQL容错机制:Checkpoint与Savepoint实战解析
大数据·sql·flink
千汇数据的老司机11 小时前
靠资源拿项目VS靠技术拿项目,二者的深刻区分。
大数据·人工智能·谈单
Elastic 中国社区官方博客12 小时前
jina-embeddings-v3 现已在 Elastic Inference Service 上可用
大数据·人工智能·elasticsearch·搜索引擎·ai·jina
Elastic 中国社区官方博客12 小时前
使用 jina-embeddings-v3 和 Elasticsearch 进行多语言搜索
大数据·数据库·人工智能·elasticsearch·搜索引擎·全文检索·jina
AIFQuant13 小时前
2026 越南证券交易所(VN30, HOSE)API 接口指南
大数据·后端·python·金融·restful