AVL树的介绍与学习

目录

1.前言

2.AVL树

3.AVL树的插入

平衡因子的更新

更新停止的条件

旋转


1.前言

在学习了二叉搜索树,set和map之后,我们接下来趁热打铁,继续学习AVL树。

2.AVL树

1.AVL树具有二叉搜索树的性质,但是它的左右子树的高度差不超过1.是一颗高度平衡的二叉搜索树。

2.AVL树中我们引入了平衡因子概念,它的大小等于右子树的高度减去左子树的高度,在AVL树中,任何节点的平衡因子只能为1,-1,0,不是这个值说明这颗树就该调整了,他就像一个风向标一样,告诉我们这颗树是否平衡。

3.思考一下,为什么AVL树的高度差不可以只为0呢?试想一下,如果这颗树只有2个节点,它无论如何根节点的平衡因子都达不到0.

4.AVL树是高度平衡的二叉搜索树,它的搜索效率可以稳定控制在logN,对比二叉搜索树在特殊情况下的N方,有了质的提升。

3.AVL树的插入

1.他按照二叉搜索树的插入规则进行插入。

2.新增节点以后,只会影响祖先节点的平衡因子,所以需要更新祖先的平衡因子。

3.平衡因子未出问题,则插入结束,如果超出了1,-1,0的范围,就需要旋转来平衡树。

平衡因子的更新

1.平衡因子=左子树-右子树。

2.子树高度变化才会影响平衡因子。

3.插入右节点,平衡因子++,插入左节点,平衡因子--。

4.parent所在子树高度是否变化决定了是否向上更新。

更新停止的条件

1.更新后parent平衡因子为0,说明是由1或者-1变化而来。高度不变,平衡因子结束更新。雪中送炭。

2.更新后平衡因子为1或-1,说明原来是0,插入一个节点变为该值,影响了树的高度,需要向上更新。

3.更新后平衡因子为-2或2,更新前parent的平衡因子是1或-1,在高的一侧又再次插入节点变为2或-2,需要旋转处理。

4.不断更新,更新到根,根的平衡因子为0或-1停止了。

旋转

旋转的原则:1.保持搜索树的规则。2.让旋转的树从不满足变平衡,降低树的高度。

旋转由左旋,右旋,左右旋,右左旋。

由于内容比较多我们先介绍这么多,代码实现和旋转代码等下一篇博客再介绍。

相关推荐
林开落L3 小时前
从零开始学习Protobuf(C++实战版)
开发语言·c++·学习·protobuffer·结构化数据序列化机制
哎呦 你干嘛~3 小时前
MODBUS协议学习
学习
Queenie_Charlie3 小时前
stars(树状数组)
数据结构·c++·树状数组
小陈phd3 小时前
多模态大模型学习笔记(一)——机器学习入门:监督/无监督学习核心任务全解析
笔记·学习·机器学习
静听山水3 小时前
Redis核心数据结构-Set
数据结构·数据库·redis
小陈phd3 小时前
多模态大模型学习笔记(二)——机器学习十大经典算法:一张表看懂分类 / 回归 / 聚类 / 降维
学习·算法·机器学习
独好紫罗兰3 小时前
对python的再认识-基于数据结构进行-a005-元组-CRUD
开发语言·数据结构·python
学编程的闹钟3 小时前
95【给图片添加跳转链接】
学习
wengqidaifeng3 小时前
数据结构(三)栈和队列(上)栈:计算机世界的“叠叠乐”
c语言·数据结构·数据库·链表
静听山水3 小时前
Redis核心数据结构
数据结构·数据库·redis