python 求内轮廓

效果图

轮廓检测方法:

python 复制代码
import cv2
import numpy as np

# 创建画布
canvas_size = 500
img = np.zeros((canvas_size, canvas_size, 3), dtype=np.uint8)  # 可视化用彩色图像
binary = np.zeros((canvas_size, canvas_size), dtype=np.uint8)  # 处理用二值图像

# 定义多边形顶点(示例为五边形)
vertices = np.array([[100, 100], [400, 150], [350, 400], [150, 400], [50, 200]], dtype=np.int32)

# 绘制带厚度的白色多边形
cv2.polylines(img, [vertices], isClosed=True, color=(255, 255, 255), thickness=2)
cv2.polylines(binary, [vertices], isClosed=True, color=255, thickness=2)

# 轮廓检测
contours, hierarchy = cv2.findContours(binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)

# 筛选内轮廓(具有父轮廓的)
inner_contours = []
if hierarchy is not None:
    hierarchy = hierarchy[0]  # 去除外层维度
    for i, (_, _, _, parent_idx) in enumerate(hierarchy):
        if parent_idx != -1:  # 存在父轮廓的即为内轮廓
            inner_contours.append(contours[i])

# 处理找到的第一个内轮廓
if inner_contours:
    # 使用多边形近似算法
    epsilon = 0.01 * cv2.arcLength(inner_contours[0], True)
    approx = cv2.approxPolyDP(inner_contours[0], epsilon, True)

    # 提取顶点坐标
    inner_vertices = approx.reshape(-1, 2)

    # 可视化标记
    for (x, y) in inner_vertices:
        cv2.circle(img, (x, y), 2, (0, 0, 255), -1)  # 红色标记顶点
        cv2.putText(img, f"({x},{y})", (x + 10, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 1)

# 显示结果
cv2.imshow('Polygon with Inner Vertices', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 输出顶点坐标
if inner_contours:
    print("内轮廓顶点坐标:")
    print(inner_vertices)
else:
    print("未检测到内轮廓")
相关推荐
PXM的算法星球33 分钟前
【软件工程】面向对象编程(OOP)概念详解
java·python·软件工程
Blossom.1181 小时前
量子网络:构建未来通信的超高速“高速公路”
网络·opencv·算法·安全·机器学习·密码学·量子计算
Humbunklung1 小时前
PySide6 GUI 学习笔记——常用类及控件使用方法(常用类矩阵QRectF)
笔记·python·学习·pyqt
蹦蹦跳跳真可爱5891 小时前
Python----深度学习(基于DNN的吃鸡预测)
python·深度学习·dnn
JJ1M82 小时前
Git技巧:Git Hook,自动触发,含实战分享
git·python·自动化
拓端研究室TRL2 小时前
PyMC+AI提示词贝叶斯项目反应IRT理论Rasch分析篮球比赛官方数据:球员能力与位置层级结构研究
大数据·人工智能·python·算法·机器学习
小白用python3 小时前
pycharm无法创建venv虚拟环境
ide·python·pycharm
ImAlex3 小时前
开开心心放假回家,结果忘记老家wifi密码新买的手机连不上WiFi?不用慌,pywifi来拯救你。
python
jndingxin3 小时前
OpenCV 图形API(69)图像与通道拼接函数------将一个 GMat 类型的对象转换为另一个具有不同深度GMat对象函数convertTo()
人工智能·opencv·计算机视觉
CoovallyAIHub3 小时前
Vision Transformers与卷积神经网络详细训练对比(附代码)
深度学习·算法·计算机视觉