2025 新生 DL-FWI 培训

摘要: 本贴给出 8 次讨论式培训的提纲, 每次培训 1 小时.

1. Basic concepts

主动学习: 提问, 理解, 继续追问. 通过不断迭代, 逐步提升问题的质量, 加深理解.

  • 1.1 Seismic exploration

    问 DeepSeek (下同): 为什么进行地震勘探?

    问: 地震勘探一般的深度是多少?

  • 1.2 Sesmic data processing -- regular process

    问: 如何进行地震数据处理?

    反过来思考: "什么是地震数据处理" 这个问题不太合适, 因为地震数据采集, 数据处理, 数据解释是三个人为定义的步骤.

    地震数据处理有哪几类方法?

    期待的答案是: 常规, 基于正演模拟, 深度学习三大类, 但 DS 给的分类方式不同.

  • 1.3 Full waveform inversion

    问: 基于正演模拟的全波形反演是怎么做的? 有哪些具体的优势与劣势?

  • 1.4 Deep learning-based full waveform inversion

    问: 深度全波形反演是怎么做的? 有哪些具体的优势与劣势?

2. Network structure

  • 2.1 InversionNet
    Encoder-decorder structure
    为什么要进行编码与解码?
    机器与人类对事物的理解是不一样的. 我们需要知道数据的本质, 需要对数据进行压缩、表征.
    例: 两个实数表示一个二维坐标点. 能不能用一个实数表示? 一般是不行的. 特殊情况呢, 例如在一条线上的坐标点.
    方法 1: 只记录横坐标即可.
    方法 2: 记录该点到原点的距离. 原始基向量为 ( 1 , 0 ) (1, 0) (1,0) 和 (0, 1). 形成一组新的基向量: ( 2 / 2 , 2 / 2 ) (\sqrt{2}/2, \sqrt{2}/2) (2 /2,2 /2), ( 2 / 2 , − 2 / 2 ) (\sqrt{2}/2, - \sqrt{2}/2) (2 /2,−2 /2). 点 ( 1 , 1 ) (1, 1) (1,1)在新的坐标系下变成 ( 2 , 0 ) (\sqrt{2}, 0) (2 ,0).
    基向量是怎么来的? 可以观察、学习获得.

神经网络试图原始地震数据, 获得它的内部表示 (可以看成一类压缩), 解码成速度模型. 卷积核就是学习出来的, 类似于基向量的东西.

学习 PCA, 理解降维.

  • 2.2 FCNVMB
    UNet
  • 2.3 DDNet
    Multi-task

3. Network components

  • 3.1 Deformable convolution
  • 3.2 Spatial attention module

4. Loss function

  • 4.1 Pixel: L1 and L2
  • 4.2 Boundary

5. Training

  • 5.1 Curriculum learning
  • 5.2 Transfer learning
  • 5.3 Domain adaptation

6. Observation system

7. Problem statement

  • 7.1 1D CMP based inversion
  • 7.2 2D velocity inversion

8. Chellenges

  • 8.1 Data distribution
    Transfer learning
  • 8.2 Data size
    Too big
  • 8.3 Dataset size
    Few field data
  • 8.4 Interpretability
    PINN: Physics informed neural network
相关推荐
拾零吖1 小时前
李宏毅 Deep Learning
人工智能·深度学习·机器学习
华芯邦1 小时前
广东充电芯片助力新能源汽车车载系统升级
人工智能·科技·车载系统·汽车·制造
时空无限2 小时前
说说transformer 中的掩码矩阵以及为什么能掩盖住词语
人工智能·矩阵·transformer
查里王2 小时前
AI 3D 生成工具知识库:当前产品格局与测评总结
人工智能·3d
武子康2 小时前
AI-调查研究-76-具身智能 当机器人走进生活:具身智能对就业与社会结构的深远影响
人工智能·程序人生·ai·职场和发展·机器人·生活·具身智能
小鹿清扫日记2 小时前
从蛮力清扫到 “会看路”:室外清洁机器人的文明进阶
人工智能·ai·机器人·扫地机器人·具身智能·连合直租·有鹿巡扫机器人
技术小黑2 小时前
Transformer系列 | Pytorch复现Transformer
pytorch·深度学习·transformer
fanstuck3 小时前
Prompt提示工程上手指南(六):AI避免“幻觉”(Hallucination)策略下的Prompt
人工智能·语言模型·自然语言处理·nlp·prompt
zhangfeng11333 小时前
win7 R 4.4.0和RStudio1.25的版本兼容性以及系统区域设置有关 导致Plots绘图面板被禁用,但是单独页面显示
开发语言·人工智能·r语言·生物信息
DogDaoDao4 小时前
神经网络稀疏化设计构架方法和原理深度解析
人工智能·pytorch·深度学习·神经网络·大模型·剪枝·网络稀疏