Python协程入门指北

一、什么是协程?

协程(Coroutine)就像可以暂停执行的函数,能够在执行过程中主动让出控制权,等准备好后再继续执行。

生活小例子

想象你在咖啡店排队:

  • 普通函数:必须一直排到取餐(阻塞等待)
  • 协程:下单后去旁边座位等,轮到你再回来取(非阻塞)

二、快速入门

1. 最简单的协程

python 复制代码
import asyncio

async def hello():
    print("开始")
    await asyncio.sleep(1)  # 暂停1秒
    print("结束")

asyncio.run(hello())  # 运行协程

2. 并发执行多个协程

python 复制代码
async def make_coffee(name, time):
    print(f"{name}开始制作")
    await asyncio.sleep(time)
    print(f"{name}制作完成")

async def main():
    # 同时制作三杯咖啡
    await asyncio.gather(
        make_coffee("拿铁", 2),
        make_coffee("美式", 1),
        make_coffee("卡布", 3)
    )

asyncio.run(main())

输出顺序:美式 → 拿铁 → 卡布(总耗时3秒)

三、核心概念

1. 关键字解析

关键字 作用说明 示例
async 定义协程函数 async def func():
await 暂停等待异步操作 await task()
run() 启动协程的主入口 asyncio.run(main())

2. 协程 vs 多线程

协程 多线程
内存占用 约1KB/任务 约8MB/线程
切换速度 100纳秒级 1微秒级
适用场景 I/O密集型任务 CPU密集型任务

四、实战应用

1. 网络请求并发

python 复制代码
import aiohttp

async def fetch(url):
    async with aiohttp.ClientSession() as session:
        async with session.get(url) as response:
            return await response.text()

async def main():
    urls = ["url1", "url2", "url3"]
    results = await asyncio.gather(*[fetch(url) for url in urls])
    print(f"获取到{len(results)}个结果")

asyncio.run(main())

2. 生产者-消费者模式

python 复制代码
async def producer(queue):
    for i in range(5):
        await queue.put(i)
        print(f"生产产品{i}")
        await asyncio.sleep(0.5)

async def consumer(queue):
    while True:
        item = await queue.get()
        print(f"消费产品{item}")
        queue.task_done()

async def main():
    queue = asyncio.Queue(3)  # 最大容量3
    await asyncio.gather(
        producer(queue),
        consumer(queue)
    )

asyncio.run(main())

五、常见问题

1. 为什么我的协程不执行?

  • 忘记使用await调用协程
  • 没有通过asyncio.run()启动
  • 在普通函数中调用协程

2. 如何停止无限循环的协程?

python 复制代码
task = asyncio.create_task(infinite_task())
await asyncio.sleep(5)
task.cancel()  # 5秒后取消任务

3. 协程会替代多线程吗?

  • 适合:网络请求、文件IO、Web服务等I/O密集型场景
  • 不适合:科学计算、图像处理等CPU密集型任务

六、优化

  1. 避免阻塞操作 :用await asyncio.sleep()代替time.sleep()
  2. 限制并发量
python 复制代码
sem = asyncio.Semaphore(10)  # 最多同时10个

async def limited_task():
    async with sem:
        await heavy_work()
  1. 使用结构化并发(Python 3.11+):
python 复制代码
async with asyncio.TaskGroup() as tg:
    tg.create_task(task1())
    tg.create_task(task2())

备注

个人水平有限,有问题随时交流~

相关推荐
冷雨夜中漫步4 小时前
Python快速入门(6)——for/if/while语句
开发语言·经验分享·笔记·python
郝学胜-神的一滴5 小时前
深入解析Python字典的继承关系:从abc模块看设计之美
网络·数据结构·python·程序人生
百锦再5 小时前
Reactive编程入门:Project Reactor 深度指南
前端·javascript·python·react.js·django·前端框架·reactjs
m0_736919106 小时前
C++代码风格检查工具
开发语言·c++·算法
喵手6 小时前
Python爬虫实战:旅游数据采集实战 - 携程&去哪儿酒店机票价格监控完整方案(附CSV导出 + SQLite持久化存储)!
爬虫·python·爬虫实战·零基础python爬虫教学·采集结果csv导出·旅游数据采集·携程/去哪儿酒店机票价格监控
2501_944934737 小时前
高职大数据技术专业,CDA和Python认证优先考哪个?
大数据·开发语言·python
helloworldandy7 小时前
使用Pandas进行数据分析:从数据清洗到可视化
jvm·数据库·python
黎雁·泠崖7 小时前
【魔法森林冒险】5/14 Allen类(三):任务进度与状态管理
java·开发语言
2301_763472468 小时前
C++20概念(Concepts)入门指南
开发语言·c++·算法
肖永威8 小时前
macOS环境安装/卸载python实践笔记
笔记·python·macos