PyTorch_点积运算

点积运算要求第一个矩阵 shape:(n, m),第二个矩阵 shape: (m, p), 两个矩阵点积运算shape为:(n,p)

  1. 运算符 @ 用于进行两个矩阵的点乘运算
  2. torch.mm 用于进行两个矩阵点乘运算,要求输入的矩阵为3维 (mm 代表 mat, mul)
  3. torch.bmm 用于批量进行矩阵点乘运算,要求输入的矩阵为3维 (b 代表 batch)
  4. torch.matmul 对进行点乘运算的两矩阵形状没有限定。
    a. 对于输入都是二维的张量相当于 mm 运算
    b. 对于输入都是三维的张量相当于 bmm 运算
    c. 对数输入的shape不同的张量,对应的最后几个维度必须符合矩阵运算规则

代码

python 复制代码
import torch 
import numpy as np 

# 使用@运算符
def test01():
    # 形状为:3行2列 
    data1 = torch.tensor([[1,2], [3,4], [5,6]])

    # 形状为:2行2列
    data2 = torch.tensor([[5,6], [7,8]])

    data = data1 @ data2
    print(data) 

# 使用 mm 函数
def test02():
    # 要求输入的张量形状都是二维的
     # 形状为:3行2列 
    data1 = torch.tensor([[1,2], [3,4], [5,6]])

    # 形状为:2行2列
    data2 = torch.tensor([[5,6], [7,8]])

    data = torch.mm(data1, data2)   
    print(data)
    print(data.shape)

# 使用 bmm 函数
def test03():
    # 第一个维度:表示批次
    # 第二个维度:多少行
    # 第三个维度:多少列
    data1 = torch.randn(3, 4, 5)
    data2 = torch.randn(3, 5, 8)

    data = torch.bmm(data1, data2) 
    print(data.shape)


# 使用 matmul 函数
def test04():
    # 对二维进行计算
    data1 = torch.randn(4,5)
    data2 = torch.randn(5,8)
    print(torch.matmul(data1, data2).shape)

    # 对三维进行计算
    data1 = torch.randn(3, 4, 5)
    data2 = torch.randn(3, 5, 8)
    print(torch.matmul(data1, data2).shape)

    data1 = torch.randn(3, 4, 5)
    data2 = torch.randn(5, 8)
    print(torch.matmul(data1, data2).shape) 

if __name__ == "__main__":
    test04()
相关推荐
子午5 小时前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
Mr_Xuhhh5 小时前
pytest -- 指定⽤例执⾏顺序
开发语言·python·pytest
tokepson5 小时前
关于python更换永久镜像源
python·技术·记录
模型启动机5 小时前
Langchain正式宣布,Deep Agents全面支持Skills,通用AI代理的新范式?
人工智能·ai·langchain·大模型·agentic ai
F_D_Z5 小时前
【解决办法】网络训练报错AttributeError: module ‘jax.core‘ has no attribute ‘Shape‘.
开发语言·python·jax
Python私教5 小时前
别让 API Key 裸奔:基于 TRAE SOLO 的大模型安全配置最佳实践
人工智能
Python私教5 小时前
Vibe Coding 体验报告:我让 TRAE SOLO 替我重构了 2000 行屎山代码,结果...
人工智能
prog_61035 小时前
【笔记】和各大AI语言模型写项目——手搓SDN后得到的经验
人工智能·笔记·语言模型
前端伪大叔5 小时前
第29篇:99% 的量化新手死在挂单上:Freqtrade 隐藏技能揭秘
后端·python·github
zhangfeng11335 小时前
深入剖析Kimi K2 Thinking与其他大规模语言模型(Large Language Models, LLMs)之间的差异
人工智能·语言模型·自然语言处理