PyTorch_点积运算

点积运算要求第一个矩阵 shape:(n, m),第二个矩阵 shape: (m, p), 两个矩阵点积运算shape为:(n,p)

  1. 运算符 @ 用于进行两个矩阵的点乘运算
  2. torch.mm 用于进行两个矩阵点乘运算,要求输入的矩阵为3维 (mm 代表 mat, mul)
  3. torch.bmm 用于批量进行矩阵点乘运算,要求输入的矩阵为3维 (b 代表 batch)
  4. torch.matmul 对进行点乘运算的两矩阵形状没有限定。
    a. 对于输入都是二维的张量相当于 mm 运算
    b. 对于输入都是三维的张量相当于 bmm 运算
    c. 对数输入的shape不同的张量,对应的最后几个维度必须符合矩阵运算规则

代码

python 复制代码
import torch 
import numpy as np 

# 使用@运算符
def test01():
    # 形状为:3行2列 
    data1 = torch.tensor([[1,2], [3,4], [5,6]])

    # 形状为:2行2列
    data2 = torch.tensor([[5,6], [7,8]])

    data = data1 @ data2
    print(data) 

# 使用 mm 函数
def test02():
    # 要求输入的张量形状都是二维的
     # 形状为:3行2列 
    data1 = torch.tensor([[1,2], [3,4], [5,6]])

    # 形状为:2行2列
    data2 = torch.tensor([[5,6], [7,8]])

    data = torch.mm(data1, data2)   
    print(data)
    print(data.shape)

# 使用 bmm 函数
def test03():
    # 第一个维度:表示批次
    # 第二个维度:多少行
    # 第三个维度:多少列
    data1 = torch.randn(3, 4, 5)
    data2 = torch.randn(3, 5, 8)

    data = torch.bmm(data1, data2) 
    print(data.shape)


# 使用 matmul 函数
def test04():
    # 对二维进行计算
    data1 = torch.randn(4,5)
    data2 = torch.randn(5,8)
    print(torch.matmul(data1, data2).shape)

    # 对三维进行计算
    data1 = torch.randn(3, 4, 5)
    data2 = torch.randn(3, 5, 8)
    print(torch.matmul(data1, data2).shape)

    data1 = torch.randn(3, 4, 5)
    data2 = torch.randn(5, 8)
    print(torch.matmul(data1, data2).shape) 

if __name__ == "__main__":
    test04()
相关推荐
plusplus16811 分钟前
边缘智能实战手册:攻克IoT应用三大挑战的AI战术
人工智能·物联网
果粒橙_LGC1 小时前
论文阅读系列(一)Qwen-Image Technical Report
论文阅读·人工智能·学习
WSSWWWSSW1 小时前
Matplotlib数据可视化实战:Matplotlib子图布局与管理入门
python·信息可视化·matplotlib
WSSWWWSSW1 小时前
Matplotlib数据可视化实战:Matplotlib图表美化与进阶教程
python·信息可视化·matplotlib
mftang1 小时前
Python可视化工具-Bokeh:动态显示数据
开发语言·python
雷达学弱狗1 小时前
backward怎么计算的是torch.tensor(2.0, requires_grad=True)变量的梯度
人工智能·pytorch·深度学习
Seeklike1 小时前
diffuxers学习--AutoPipeline
人工智能·python·stable diffusion·diffusers
前端小趴菜051 小时前
python - 数据类型
python
杨过过儿1 小时前
【Task01】:简介与环境配置(第一章1、2节)
人工智能·自然语言处理
小妖同学学AI1 小时前
deepseek一键生成word和excel并一键下载
人工智能·word·excel·deepseek