OpenCV 中用于背景分割的一个类cv::bgsegm::BackgroundSubtractorGMG

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

cv::bgsegm::BackgroundSubtractorGMG 是 OpenCV 中用于背景分割的一个类,它实现了基于贝叶斯推理的背景建模算法(Bayesian inference-based background modeling algorithm)。这个算法特别适合处理复杂的背景变化,例如光照变化、动态背景等。

主要特点

  • 适应性强:能够很好地适应光照变化和其他环境变化。
  • 初始化过程:需要一定数量的帧来初始化背景模型,默认是前 120 帧。
  • 噪声过滤:通过形态学操作去除前景掩码中的噪声。

构造函数

在较新的 OpenCV 版本中,通常不直接使用构造函数来创建 BackgroundSubtractorGMG 实例,而是通过工厂方法 cv::bgsegm::createBackgroundSubtractorGMG() 来创建。这是因为 OpenCV 将许多对象的创建封装到了这些工厂方法中,以便更好地管理内存和配置参数。

cpp 复制代码
Ptr<BackgroundSubtractorGMG> cv::bgsegm::createBackgroundSubtractorGMG
(
    int initializationFrames = 120, 
    double decisionThreshold = 0.8
);

参数:

  • initializationFrames: 初始化背景模型所需的帧数,默认值为 120。
  • decisionThreshold: 决策阈值,超过该阈值则认为是前景像素,默认值为 0.8。

主要方法

apply函数

函数原型
cpp 复制代码
void apply
(
	InputArray image, OutputArray fgmask, double learningRate=-1
);
参数
  • image: 输入当前帧。
  • fgmask: 输出前景掩码图像。
  • learningRate: 学习率,决定了新获取的信息对模型的影响速度。默认值 -1 表示自动选择学习率。

getBackgroundImage函数

函数原型
cpp 复制代码
void getBackgroundImage
(
	OutputArray backgroundImage
) const;
参数
  • backgroundImage: 输出背景图像。

代码示例

cpp 复制代码
#include <opencv2/bgsegm.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    cv::VideoCapture cap( 0 );  // 打开摄像头
    if ( !cap.isOpened() )
    {
        std::cerr << "无法打开摄像头!" << std::endl;
        return -1;
    }

    // 创建 GMG 背景减除器
    cv::Ptr< cv::bgsegm::BackgroundSubtractorGMG > bgSubtractor = cv::bgsegm::createBackgroundSubtractorGMG();

    cv::Mat frame, fgMask;

    while ( true )
    {
        cap >> frame;  // 获取新帧
        if ( frame.empty() )
            break;  // 到达视频结尾

        bgSubtractor->apply( frame, fgMask );  // 应用背景减除器

        cv::imshow( "Original Frame", frame );
        cv::imshow( "Foreground Mask", fgMask );

        if ( cv::waitKey( 30 ) >= 0 )
            break;  // 按任意键退出
    }

    return 0;
}

运行结果

白色的是运动的物体,后面静止的背景都没了。

相关推荐
gptplus3 分钟前
【重要通知】ChatGPT Plus将于9月16日调整全球充值定价,低价区将被弃用,开发者如何应对?
人工智能·gpt·chatgpt
亚里随笔6 分钟前
小型语言模型:智能体AI的未来?
人工智能·语言模型·自然语言处理·llm·rlhf·agentic
mit6.8247 分钟前
[code-review] AI聊天接口 | 语言模型通信器
人工智能·语言模型·代码复审
Zero_to_zero12341 小时前
NVSpeech_170k 数据集音频提取处理
人工智能·音视频
聚集的流星1 小时前
大模型提示词工程调优
人工智能
东方佑2 小时前
从音频到Token:构建原神角色语音识别模型的完整实践
人工智能·音视频·语音识别
dlraba8022 小时前
基于 OpenCV 与 SIFT 算法的指纹识别系统实现:从匹配到可视化
人工智能·opencv·计算机视觉
shizidushu2 小时前
Hugging Face NLP课程学习记录 - 3. 微调一个预训练模型
人工智能·学习·自然语言处理·微调·huggingface
格林威2 小时前
机器视觉在半导体制造中有哪些检测应用
人工智能·数码相机·yolo·计算机视觉·视觉检测·制造·相机
月岛雫-3 小时前
“单标签/多标签” vs “二分类/多分类”
人工智能·分类·数据挖掘