clickhouse - 重新建表覆盖旧表-解决分区时间错误问题-197001

由于上传时间戳为毫秒级,建表sql的分区按照 PARTITION BY toYYYYMM(toDate(ts)) 秒级划分,导致所有的数据计算后超出范围全部标注在了 1970-01的分区上面。

  1. 尝试修改表的配置分区无效。
  2. 创建新表更新分区的配置 PARTITION BY toYYYYMM(toDate(ts/1000)) ,抽取数据到新表。再依次验证后还原表名字。

验证函数中的数据,toDate转换的情况

sql 复制代码
SELECT toYYYYMM(toDate(ts / 1000)) FROM ts_kv_cluster 

Query id: efa8f8b1-cb92-4344-b39e-bf18f3c00ff1

┌─toYYYYMM(toDate(divide(ts, 1000)))─┐
│                             202504 │
│                             202504 │
│                             202504 │
│                             202504 │




SELECT toYYYYMM(toDate(ts)) FROM ts_kv_cluster 

Query id: 92620905-0add-4c91-8b3a-2065fe67d7b3

┌─toYYYYMM(toDate(ts))─┐
│               197001 │
│               197001 │
│               197001 │

解决分区的时间错误

sql 复制代码
# 创建新表
 CREATE TABLE iot.ts_kv_cluster_new
(
    `entity_id` String,
    `key` Int32,
    `ts` Int64,
    `bool_v` Nullable(UInt8),
    `str_v` Nullable(String),
    `long_v` Nullable(Int64),
    `dbl_v` Nullable(Float64),
    `json_v` Nullable(String)
)
ENGINE = ReplicatedMergeTree('/clickhouse/table/{shard}/ts_kv_cluster_new', '{replica}')
PARTITION BY toYYYYMM(toDate(ts / 1000))
PRIMARY KEY (entity_id, key, ts)
ORDER BY (entity_id, key, ts)
SETTINGS index_granularity = 8192;



# 复制数据到新表中
INSERT INTO iot.ts_kv_cluster_new SELECT * FROM iot.ts_kv_cluster;

# 对比数量
SELECT COUNT(*) FROM iot.ts_kv_cluster;
SELECT COUNT(*) FROM iot.ts_kv_cluster_old;

# 重命名 原有的表名  到 旧表
RENAME TABLE iot.ts_kv_cluster TO iot.ts_kv_cluster_old;

# 重命名 新表 到原有的表名
RENAME TABLE iot.ts_kv_cluster_new TO iot.ts_kv_cluster;

# 查看分区的分布
SELECT partition, count() FROM system.parts WHERE table = 'ts_kv_cluster' GROUP BY partition;


# 删除 旧表
DROP TABLE iot.ts_kv_cluster_old;
相关推荐
爱吃萝卜的猪3 天前
Clickhouse源码分析-副本数据同步
clickhouse·源码解析·副本同步
努力做一名技术3 天前
从 Elastic 到 ClickHouse:日志系统性能与成本优化之路
clickhouse
白眼黑刺猬3 天前
ClickHouse 高性能实时分析数据库-物化视图篇
clickhouse
Fireworkitte3 天前
ClickHouse 常用的使用场景
clickhouse
小牛头#19 天前
clickhouse 各个引擎适用的场景
大数据·clickhouse·机器学习
全干engineer19 天前
ClickHouse 入门详解:它到底是什么、优缺点、和主流数据库对比、适合哪些场景?
数据库·clickhouse
爱吃萝卜的猪19 天前
Clickhouse诊断工具之chdig
clickhouse
源图客19 天前
ClickHouse介绍与应用
clickhouse
码农周19 天前
ClickHouse 时间范围查询:精准筛选「本月数据」
clickhouse
积跬步,慕至千里21 天前
clickhouse数据库表和doris数据库表迁移starrocks数据库时建表注意事项总结
数据库·clickhouse