MCU怎么运行深度学习模型

Gitee仓库

c 复制代码
git clone https://gitee.com/banana-peel-x/freedom-learn.git

项目场景:

解决面试时遗留的问题,面试官提了两个问题:1.单片机能跑深度学习的模型吗? 2.为什么FreeRTOS要采用SVC去触发第一个任务,只用PendSV中断切换不行吗?(问题二后续研究) 问题一:当时回答的是理论上单片机挂载NPU,把数据发送给NPU的协议定好,理论上也是可以的。 本项目就从轮子出发,不借助任何库,尝试小RAM MCU部署神经网络的方法。分别在MCU和PC端进行了尝试。技术栈:多层网络感知机(MLP),正反向传播,梯度下降法。模型量化部署。结论:MCU受限于主频速率,小RAM,在推理时间,模型大小方面均存在限制,即使使用硬件加速的NPU,速率也没有优势。


软件架构

MCU端: 两个Task,StartDefaultTask控制LED,观察系统有没有挂掉。StartTask_50ms里运行reason_task,执行时机通过flag_uart1_received变量判断ReceiverState状态,flag_uart1_received变量在Uart中断切换状态。 PC端: reasoning.py运行两个线程,主线程负责PC端的推理,send_image_over_uart线程通过Uart发送图像,并监听下位机的推理结果。

bash 复制代码
NeuralNetworkFromScratch-main\train.py:使用MLP训练一组权重参数,保存到文件\result\model_parameters.npz,后在终端随机输入图片序号,进行预测,预测结果在数字上方,方便比较。
NeuralNetworkFromScratch-main\result\Tools.py:从model_parameters.npz文件中load权重参数,写入model_parameters.c文件
NeuralNetworkFromScratch-main\result\quantization.py:将model_parameters.npz提取权重参数,量化为int8类型,后写入quantized_model_parameters.c文件
NeuralNetworkFromScratch-main\result\reasoning.py:核心文件,加载量化后的参数,对权重参数反量化后推理,同时send_image_over_uart线程发送图像数据给MCU

运行reasoning.py后,选择图片序号,终端打印预测概率,关闭窗口后send_image_over_uart线程发送图像给MCU端,发送完成后会监听下位机返回数据,并在终端打印。




细节:

1.不量化行不行:STM32F103C8T6又64K的ROM和20K的RAM,不量化权重参数会占用:(784x10+10+10x10+10)x4=31840 Bytes=31KB。量化后权重参数占用空间:7.7KB。

2.为什么网络参数是 输入层到隐藏层10个神经元,隐藏层到输出层10个神经元,原始网络分别是20,10。这样的话很容易超出RAM大小。

相关推荐
xiaotianyun883 分钟前
NCP13992 CS 分压计算
单片机·嵌入式硬件·ncp13992
B站_计算机毕业设计之家39 分钟前
大数据YOLOv8无人机目标检测跟踪识别系统 深度学习 PySide界面设计 大数据 ✅
大数据·python·深度学习·信息可视化·数据挖掘·数据分析·flask
偶像你挑的噻1 小时前
Linux应用开发-17-套接字
linux·网络·stm32·嵌入式硬件
Msshu1232 小时前
PD快充诱骗芯片 XSP15 支持获取快充电压可与外部MCU共用D+D-网络与电脑传输数据
单片机·嵌入式硬件
brave and determined2 小时前
MCU学习Day24——STM32G030多路ADC DMA采集深度解析:完全可配置序列器与不完全可配置序列器的陷阱与抉择
stm32·单片机·嵌入式硬件·dma·adc·hal·多通道采集
d111111111d2 小时前
通过操作地址,来进行STM32的写入GPIO端口值
stm32·单片机·嵌入式硬件
小刘爱玩单片机3 小时前
【stm32简单外设篇】- 土壤湿度传感器
c语言·stm32·单片机·嵌入式硬件
晚秋大魔王3 小时前
基于python的jlink单片机自动化批量烧录工具
前端·python·单片机
d111111111d3 小时前
STM32外设学习--TIM定时器--编码器接口
stm32·嵌入式硬件·学习
武子康8 小时前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr