LLaMA-Omni 2:基于 LLM 的自回归流语音合成实时口语聊天机器人

LLaMA-Omni 2 是基于 Qwen2.5-0.5B/1.5B/3B/7B/14B/32B-Instruct 模型的一系列语音语言模型。与 LLaMA-Omni 类似,它可以同时生成文本和语音应答,从而实现高质量、低延迟的语音交互。通过新引入的流式自回归语音解码器,LLaMA-Omni 2 与 LLaMA-Omni 相比实现了更高的语音质量。

安装

bash 复制代码
git clone https://github.com/ictnlp/LLaMA-Omni2
cd LLaMA-Omni2

conda create -n llama-omni2 python=3.10
conda activate llama-omni2
pip install -e .

快手上手

下载Whisper large v3

bash 复制代码
import whisper
model = whisper.load_model("large-v3", download_root="models/speech_encoder/")

下载 CosyVoice 2

bash 复制代码
huggingface-cli download --resume-download ICTNLP/cosy2_decoder --local-dir models/cosy2_decoder

从 Hugging Face 下载 LLaMA-Omni2 系列型号。LLaMA-Omni2-0.5B/1.5B/3B/7B/14B 仅支持英文,而 LLaMA-Omni2-0.5B/1.5B/3B/7B/14B/32B-Bilingual 支持中英文

LLaMA-Omni2 LLaMA-Omni2-Bilingual
🤗 LLaMA-Omni2-0.5B 🤗 LLaMA-Omni2-0.5B-Bilingual
🤗 LLaMA-Omni2-1.5B 🤗 LLaMA-Omni2-1.5B-Bilingual
🤗 LLaMA-Omni2-3B 🤗 LLaMA-Omni2-3B-Bilingual
🤗 LLaMA-Omni2-7B 🤗 LLaMA-Omni2-7B-Bilingual
🤗 LLaMA-Omni2-14B 🤗 LLaMA-Omni2-14B-Bilingual
- 🤗 LLaMA-Omni2-32B-Bilingual

Gradio

controller

bash 复制代码
python -m llama_omni2.serve.controller --host 0.0.0.0 --port 10000

server

bash 复制代码
python -m llama_omni2.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --vocoder-dir models/cosy2_decoder

worker

bash 复制代码
python -m llama_omni2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path models/$model_name --model-name $model_name

访问 http://localhost:8000/ 并与 LLaMA-Omni2 互动!

本地推理

bash 复制代码
output_dir=examples/$model_name
mkdir -p $output_dir

python llama_omni2/inference/run_llama_omni2.py \
    --model_path models/$model_name \
    --question_file examples/questions.json \
    --answer_file $output_dir/answers.jsonl \
    --temperature 0 \
    --s2s

python llama_omni2/inference/run_cosy2_decoder.py \
    --input-path $output_dir/answers.jsonl \
    --output-dir $output_dir/wav \
    --lang en

鸣谢

  • CosyVoice 2:我们使用 CosyVoice 2 的预训练语音标记器、语流匹配模型和声码器。
  • SLAM-LLM:我们借用了语音编码器和语音适配器的一些代码。
相关推荐
趣浪吧8 分钟前
AI在手机上真没用吗?
人工智能·智能手机·aigc·音视频·媒体
IT考试认证24 分钟前
华为人工智能认证 HCIA-AI Solution H13-313 题库
人工智能·华为·题库·hcia-ai·h13-313
qq_2821953138 分钟前
嵌入式音频USB Audio调试
linux·音视频
AI technophile41 分钟前
OpenCV计算机视觉实战(31)——人脸识别详解
人工智能·opencv·计算机视觉
代码狂想家41 分钟前
CANN视频增强实战:基于Ascend平台的历史影像修复
音视频
九河云44 分钟前
汽车轻量化部件智造:碳纤维成型 AI 调控与强度性能数字孪生验证实践
人工智能·汽车·数字化转型
3DVisionary1 小时前
DIC技术如何重新定义汽车板料成形测试
人工智能·汽车·材料力学性能·dic技术·汽车板料·成形极限图·非接触式测量
5***o5001 小时前
深度学习代码库
人工智能·深度学习
2501_941664961 小时前
AI在创意产业的应用:从艺术到娱乐的数字变革
人工智能
没有梦想的咸鱼185-1037-16631 小时前
最新“科研创新与智能化转型“暨AI 智能体(Agent)开发、大语言模型(LLM)本地化部署与RAG/微调优化技术
人工智能·语言模型·自然语言处理·chatgpt·数据分析