LLaMA-Omni 2:基于 LLM 的自回归流语音合成实时口语聊天机器人

LLaMA-Omni 2 是基于 Qwen2.5-0.5B/1.5B/3B/7B/14B/32B-Instruct 模型的一系列语音语言模型。与 LLaMA-Omni 类似,它可以同时生成文本和语音应答,从而实现高质量、低延迟的语音交互。通过新引入的流式自回归语音解码器,LLaMA-Omni 2 与 LLaMA-Omni 相比实现了更高的语音质量。

安装

bash 复制代码
git clone https://github.com/ictnlp/LLaMA-Omni2
cd LLaMA-Omni2

conda create -n llama-omni2 python=3.10
conda activate llama-omni2
pip install -e .

快手上手

下载Whisper large v3

bash 复制代码
import whisper
model = whisper.load_model("large-v3", download_root="models/speech_encoder/")

下载 CosyVoice 2

bash 复制代码
huggingface-cli download --resume-download ICTNLP/cosy2_decoder --local-dir models/cosy2_decoder

从 Hugging Face 下载 LLaMA-Omni2 系列型号。LLaMA-Omni2-0.5B/1.5B/3B/7B/14B 仅支持英文,而 LLaMA-Omni2-0.5B/1.5B/3B/7B/14B/32B-Bilingual 支持中英文

LLaMA-Omni2 LLaMA-Omni2-Bilingual
🤗 LLaMA-Omni2-0.5B 🤗 LLaMA-Omni2-0.5B-Bilingual
🤗 LLaMA-Omni2-1.5B 🤗 LLaMA-Omni2-1.5B-Bilingual
🤗 LLaMA-Omni2-3B 🤗 LLaMA-Omni2-3B-Bilingual
🤗 LLaMA-Omni2-7B 🤗 LLaMA-Omni2-7B-Bilingual
🤗 LLaMA-Omni2-14B 🤗 LLaMA-Omni2-14B-Bilingual
- 🤗 LLaMA-Omni2-32B-Bilingual

Gradio

controller

bash 复制代码
python -m llama_omni2.serve.controller --host 0.0.0.0 --port 10000

server

bash 复制代码
python -m llama_omni2.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --vocoder-dir models/cosy2_decoder

worker

bash 复制代码
python -m llama_omni2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path models/$model_name --model-name $model_name

访问 http://localhost:8000/ 并与 LLaMA-Omni2 互动!

本地推理

bash 复制代码
output_dir=examples/$model_name
mkdir -p $output_dir

python llama_omni2/inference/run_llama_omni2.py \
    --model_path models/$model_name \
    --question_file examples/questions.json \
    --answer_file $output_dir/answers.jsonl \
    --temperature 0 \
    --s2s

python llama_omni2/inference/run_cosy2_decoder.py \
    --input-path $output_dir/answers.jsonl \
    --output-dir $output_dir/wav \
    --lang en

鸣谢

  • CosyVoice 2:我们使用 CosyVoice 2 的预训练语音标记器、语流匹配模型和声码器。
  • SLAM-LLM:我们借用了语音编码器和语音适配器的一些代码。
相关推荐
易晨 微盛·企微管家4 分钟前
生鲜电商企业微信私域代运营:从去中心化运营看微盛AI·企微管家SCRM适配案例
人工智能·微信·企业微信
李元豪34 分钟前
MetaGPT、AutoGen、XAgent camel仔细对比
人工智能
AndrewHZ36 分钟前
【图像处理基石】图像Inpainting入门详解
图像处理·人工智能·深度学习·opencv·transformer·图像修复·inpainting
jiushun_suanli1 小时前
PyTorch CV模型实战全流程(一)
人工智能·pytorch·python
张拭心1 小时前
“不卷 AI、不碰币、下班不收消息”——Android 知名技术大牛 Jake Wharton 的求职价值观
android·前端·aigc
大千AI助手1 小时前
HOSVD(高阶奇异值分解):高维数据的“解剖术”
人工智能·线性代数·矩阵·张量·svd·hosvd·高阶奇异值分解
mit6.8241 小时前
[nanoGPT] 编排训练 | `get_batch` | AdamW | `get_lr` | 分布式训练(DDP)
人工智能
rengang661 小时前
30-机器学习应用案例:展示机器学习在各行业中的典型应用实例
人工智能·机器学习
盈创力和20071 小时前
以太网多参量传感器:超越温湿度的“智能嗅探”,守护每一方空气的安全
大数据·人工智能
wwlsm_zql2 小时前
江西移动5G赋能:电力行业智能化革新探秘
人工智能·5g