LLaMA-Omni 2:基于 LLM 的自回归流语音合成实时口语聊天机器人

LLaMA-Omni 2 是基于 Qwen2.5-0.5B/1.5B/3B/7B/14B/32B-Instruct 模型的一系列语音语言模型。与 LLaMA-Omni 类似,它可以同时生成文本和语音应答,从而实现高质量、低延迟的语音交互。通过新引入的流式自回归语音解码器,LLaMA-Omni 2 与 LLaMA-Omni 相比实现了更高的语音质量。

安装

bash 复制代码
git clone https://github.com/ictnlp/LLaMA-Omni2
cd LLaMA-Omni2

conda create -n llama-omni2 python=3.10
conda activate llama-omni2
pip install -e .

快手上手

下载Whisper large v3

bash 复制代码
import whisper
model = whisper.load_model("large-v3", download_root="models/speech_encoder/")

下载 CosyVoice 2

bash 复制代码
huggingface-cli download --resume-download ICTNLP/cosy2_decoder --local-dir models/cosy2_decoder

从 Hugging Face 下载 LLaMA-Omni2 系列型号。LLaMA-Omni2-0.5B/1.5B/3B/7B/14B 仅支持英文,而 LLaMA-Omni2-0.5B/1.5B/3B/7B/14B/32B-Bilingual 支持中英文

LLaMA-Omni2 LLaMA-Omni2-Bilingual
🤗 LLaMA-Omni2-0.5B 🤗 LLaMA-Omni2-0.5B-Bilingual
🤗 LLaMA-Omni2-1.5B 🤗 LLaMA-Omni2-1.5B-Bilingual
🤗 LLaMA-Omni2-3B 🤗 LLaMA-Omni2-3B-Bilingual
🤗 LLaMA-Omni2-7B 🤗 LLaMA-Omni2-7B-Bilingual
🤗 LLaMA-Omni2-14B 🤗 LLaMA-Omni2-14B-Bilingual
- 🤗 LLaMA-Omni2-32B-Bilingual

Gradio

controller

bash 复制代码
python -m llama_omni2.serve.controller --host 0.0.0.0 --port 10000

server

bash 复制代码
python -m llama_omni2.serve.gradio_web_server --controller http://localhost:10000 --port 8000 --vocoder-dir models/cosy2_decoder

worker

bash 复制代码
python -m llama_omni2.serve.model_worker --host 0.0.0.0 --controller http://localhost:10000 --port 40000 --worker http://localhost:40000 --model-path models/$model_name --model-name $model_name

访问 http://localhost:8000/ 并与 LLaMA-Omni2 互动!

本地推理

bash 复制代码
output_dir=examples/$model_name
mkdir -p $output_dir

python llama_omni2/inference/run_llama_omni2.py \
    --model_path models/$model_name \
    --question_file examples/questions.json \
    --answer_file $output_dir/answers.jsonl \
    --temperature 0 \
    --s2s

python llama_omni2/inference/run_cosy2_decoder.py \
    --input-path $output_dir/answers.jsonl \
    --output-dir $output_dir/wav \
    --lang en

鸣谢

  • CosyVoice 2:我们使用 CosyVoice 2 的预训练语音标记器、语流匹配模型和声码器。
  • SLAM-LLM:我们借用了语音编码器和语音适配器的一些代码。
相关推荐
何双新14 分钟前
第21讲、Odoo 18 配置机制详解
linux·python·开源
一切皆有可能!!3 小时前
实践篇:利用ragas在自己RAG上实现LLM评估②
人工智能·语言模型
月白风清江有声4 小时前
爆炸仿真的学习日志
人工智能
华奥系科技6 小时前
智慧水务发展迅猛:从物联网架构到AIoT系统的跨越式升级
人工智能·物联网·智慧城市
R²AIN SUITE6 小时前
MCP协议重构AI Agent生态:万能插槽如何终结工具孤岛?
人工智能
b***25116 小时前
动力电池点焊机:驱动电池焊接高效与可靠的核心力量|比斯特自动化
人工智能·科技·自动化
Gyoku Mint6 小时前
机器学习×第二卷:概念下篇——她不再只是模仿,而是开始决定怎么靠近你
人工智能·python·算法·机器学习·pandas·ai编程·matplotlib
小和尚同志6 小时前
通俗易懂的 MCP 概念入门
人工智能·aigc
dudly7 小时前
大语言模型评测体系全解析(下篇):工具链、学术前沿与实战策略
人工智能·语言模型
zzlyx997 小时前
AI大数据模型如何与thingsboard物联网结合
人工智能·物联网