基于深度学习的交通标志识别系统

基于深度学习的交通标志识别系统

项目简介

本项目实现了一个基于深度学习的交通标志识别系统,使用卷积神经网络(CNN)对交通标志图像进行分类识别。系统包含数据预处理、模型训练与评估、结果可视化和用户交互界面等模块。

数据集

项目使用德国交通标志识别基准数据集(GTSRB),包含43类不同的交通标志,超过50,000张彩色图像。数据集具有以下特点:

  • 真实道路场景中拍摄的交通标志
  • 不同光照、天气和遮挡条件
  • 每类标志大小和数量不一

系统架构

  1. 数据预处理模块:数据加载、图像处理、数据增强、归一化
  2. 模型构建模块:设计并实现卷积神经网络架构
  3. 模型训练与评估模块:训练模型并评估性能
  4. 可视化模块:展示训练过程和识别结果
  5. 用户界面模块:提供图像上传和识别功能

技术栈

  • Python:编程语言
  • TensorFlow/Keras:深度学习框架
  • OpenCV:图像处理
  • NumPy/Pandas:数据处理
  • Matplotlib:数据可视化
  • Streamlit:用户界面

使用说明

  1. 安装依赖:pip install -r requirements.txt
  2. 下载数据集:运行python src/download_dataset.py
  3. 训练模型:运行python src/train_model.py
  4. 启动用户界面:运行streamlit run src/app.py

目录结构

复制代码
traffic_sign_recognition/
├── data/                  # 数据集和预处理数据
├── models/                # 保存训练好的模型
├── src/                   # 源代码
│   ├── data_preprocessing.py  # 数据预处理模块
│   ├── model.py               # 模型定义
│   ├── train_model.py         # 训练脚本
│   ├── evaluate.py            # 评估脚本
│   ├── app.py                 # 用户界面
│   └── utils.py               # 工具函数
├── notebooks/             # Jupyter notebooks用于实验和分析
├── requirements.txt       # 项目依赖
└── README.md              # 项目说明
相关推荐
人工智能小豪4 小时前
2025年大模型平台落地实践研究报告|附75页PDF文件下载
大数据·人工智能·transformer·anythingllm·ollama·大模型应用
芯盾时代4 小时前
AI在网络安全领域的应用现状和实践
人工智能·安全·web安全·网络安全
黑鹿0224 小时前
机器学习基础(三) 逻辑回归
人工智能·机器学习·逻辑回归
电鱼智能的电小鱼5 小时前
虚拟现实教育终端技术方案——基于EFISH-SCB-RK3588的全场景国产化替代
linux·网络·人工智能·分类·数据挖掘·vr
天天代码码天天5 小时前
C# Onnx 动漫人物头部检测
人工智能·深度学习·神经网络·opencv·目标检测·机器学习·计算机视觉
Joseit5 小时前
从零打造AI面试系统全栈开发
人工智能·面试·职场和发展
小猪猪_16 小时前
多视角学习、多任务学习,迁移学习
人工智能·迁移学习
飞哥数智坊6 小时前
AI编程实战:Cursor 1.0 上手实测,刀更锋利马更快
人工智能·cursor
vlln6 小时前
【论文解读】ReAct:从思考脱离行动, 到行动反馈思考
人工智能·深度学习·机器学习
qq_430908576 小时前
华为ICT和AI智能应用
人工智能·华为