基于深度学习的交通标志识别系统

基于深度学习的交通标志识别系统

项目简介

本项目实现了一个基于深度学习的交通标志识别系统,使用卷积神经网络(CNN)对交通标志图像进行分类识别。系统包含数据预处理、模型训练与评估、结果可视化和用户交互界面等模块。

数据集

项目使用德国交通标志识别基准数据集(GTSRB),包含43类不同的交通标志,超过50,000张彩色图像。数据集具有以下特点:

  • 真实道路场景中拍摄的交通标志
  • 不同光照、天气和遮挡条件
  • 每类标志大小和数量不一

系统架构

  1. 数据预处理模块:数据加载、图像处理、数据增强、归一化
  2. 模型构建模块:设计并实现卷积神经网络架构
  3. 模型训练与评估模块:训练模型并评估性能
  4. 可视化模块:展示训练过程和识别结果
  5. 用户界面模块:提供图像上传和识别功能

技术栈

  • Python:编程语言
  • TensorFlow/Keras:深度学习框架
  • OpenCV:图像处理
  • NumPy/Pandas:数据处理
  • Matplotlib:数据可视化
  • Streamlit:用户界面

使用说明

  1. 安装依赖:pip install -r requirements.txt
  2. 下载数据集:运行python src/download_dataset.py
  3. 训练模型:运行python src/train_model.py
  4. 启动用户界面:运行streamlit run src/app.py

目录结构

复制代码
traffic_sign_recognition/
├── data/                  # 数据集和预处理数据
├── models/                # 保存训练好的模型
├── src/                   # 源代码
│   ├── data_preprocessing.py  # 数据预处理模块
│   ├── model.py               # 模型定义
│   ├── train_model.py         # 训练脚本
│   ├── evaluate.py            # 评估脚本
│   ├── app.py                 # 用户界面
│   └── utils.py               # 工具函数
├── notebooks/             # Jupyter notebooks用于实验和分析
├── requirements.txt       # 项目依赖
└── README.md              # 项目说明
相关推荐
子午28 分钟前
【食物识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
Dev7z32 分钟前
基于深度学习和图像处理的药丸计数与分类系统研究
图像处理·人工智能·深度学习
Mxsoft6191 小时前
某次联邦学习训练模型不准,发现协议转换字段映射错,手动校验救场!
人工智能
shayudiandian1 小时前
用PyTorch训练一个猫狗分类器
人工智能·pytorch·深度学习
这儿有一堆花2 小时前
把 AI 装进终端:Gemini CLI 上手体验与核心功能解析
人工智能·ai·ai编程
子午2 小时前
【蘑菇识别系统】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积网络+resnet50算法
人工智能·python·深度学习
模型启动机2 小时前
Langchain正式宣布,Deep Agents全面支持Skills,通用AI代理的新范式?
人工智能·ai·langchain·大模型·agentic ai
Python私教2 小时前
别让 API Key 裸奔:基于 TRAE SOLO 的大模型安全配置最佳实践
人工智能
Python私教2 小时前
Vibe Coding 体验报告:我让 TRAE SOLO 替我重构了 2000 行屎山代码,结果...
人工智能
prog_61032 小时前
【笔记】和各大AI语言模型写项目——手搓SDN后得到的经验
人工智能·笔记·语言模型