机器学习第二讲:对比传统编程:解决复杂规则场景

机器学习第二讲:对比传统编程:解决复杂规则场景

资料取自《零基础学机器学习》

查看总目录:学习大纲

关于DeepSeek本地部署指南可以看下我之前写的文章:DeepSeek R1本地与线上满血版部署:超详细手把手指南


一、场景化对比:传统编程VS机器学习 🎭

案例 :开发抖音推荐系统如何运作(此处引用教材[第一章]对比实例[1](#1)
传统编程 人工制定规则 定义用户年龄 标记视频分类 编写点击权重算法 机器学习 数据自动学习 用户观看记录 点赞/时长数据 模型自动发现规律


二、传统编程的「手工套餐」 ✍️

  1. 运作方式

    • 工程师像编写菜谱一样预先设定所有规则
    • 例:如果用户点击过3个萌宠视频 → 推送同类标签视频
  2. 典型问题 (教材[第一章]讨论的局限性[1](#1)):

    • 复杂度爆炸:用户行为有500种可能性时,需要写数百万条规则
    • 机械僵化:遇到跨领域兴趣组合(如"宠物+天文+摇滚乐")无法识别
    • 维护噩梦:新增视频类型就要重写整套规则
  3. 生活类比

    像手动调节空调温度

    ❌ 需要每小时起床调温度

    ✅ 智能空调根据体感自动调节


三、机器学习的「自动驾驶」 🤖

  1. 核心优势 (教材[第一章]关键技术特征[1](#1)):

    • 自动进化:当用户开始关注滑雪,模型会捕捉关联特征(如冰雪装备/旅行地)
    • 处理高维:同时考量用户设备型号/观看时段/滑动速度等50个维度
    • 发现隐规律:可能挖掘出「深夜观看搞笑视频越久 → 早晨更爱看励志内容」
  2. *典型技术实现

    python 复制代码
    # 机器学习代码逻辑(对比传统编程)
    model.fit(用户行为数据)  # 让模型自己学习规律
    推荐结果 = model.predict(新用户)  # 根据学习到的规律预测

    ▲ 传统方法此处需编写上千行判断规则

  3. 生活类比

    像老司机开车

    ❌ 不需要背「转弯方向盘打多少度」的公式

    ✅ 通过大量实操自然掌握手感


四、应用场景分界线 🚦

展示适用领域差异(教材[第一章]学习范式对比章节[2](#2)):
问题类型 规则明确 规则模糊 传统编程
如计算器app 机器学习
如AI绘画生成

判断标准

  1. 能写出明确if-else规则 → 传统编程 ✔️
    (例:计算网购运费:如果重量>5kg → 运费=20元
  2. 需要处理关联性/概率性问题 → 机器学习 ✔️
    (例:预测用户可能购买的商品组合)

五、一句话核心总结 💡

机器学习如同给计算机装上了「经验学习系统」,让它在处理人类无法穷举规则的复杂场景时,能像孩子学走路一样通过试错自我进化 (教材第一章核心结论[3](#3)

(经典案例:阿尔法狗通过自我对弈学习围棋策略,而非输入人类棋谱规则🤖)


目录:总目录

上篇文章:机器学习第一讲:机器学习本质:让机器通过数据自动寻找规律
下篇文章:机器学习第三讲:监督学习 → 带答案的学习册,如预测房价时需要历史价格数据


  1. 对应《零基础学机器学习》第一章第2节"与传统编程区别" ↩︎ ↩︎ ↩︎

  2. 参考《零基础学机器学习》第一章第3节"三大学习范式"分类框架 ↩︎

  3. 引用自《零基础学机器学习》第一章第1节"机器学习本质" ↩︎

相关推荐
Master_oid35 分钟前
机器学习29:增强式学习(Deep Reinforcement Learning)④
人工智能·学习·机器学习
ballball~~38 分钟前
拉普拉斯金字塔
算法·机器学习
Cemtery11639 分钟前
Day26 常见的降维算法
人工智能·python·算法·机器学习
zxsz_com_cn1 小时前
预测性维护在智能制造设备上的实际应用
人工智能
一条闲鱼_mytube1 小时前
智能体设计模式(三)多智能体协作-记忆管理-学习与适应
人工智能·学习·设计模式
scott1985122 小时前
opencv 畸变系数的说明
人工智能·数码相机·opencv
LS_learner2 小时前
Transmormer从零基础到精通
人工智能
ASD123asfadxv2 小时前
【蜂巢健康监测】基于YOLO的蜂群病虫害识别系统
人工智能·yolo·目标跟踪
说私域2 小时前
基于AI智能名片链动2+1模式服务预约商城系统的社群运营与顾客二次消费吸引策略研究
大数据·人工智能·小程序·开源·流量运营
丝斯20113 小时前
AI学习笔记整理(50)——大模型中的Graph RAG
人工智能·笔记·学习