定义结构体:
rust
struct CausalAttention {
w_qkv: Linear,
dropout: Dropout,
d_model: Tensor,
mask: Tensor,
device: Device,
}
定义new方法:
rust
impl CausalAttention {
fn new(vb: VarBuilder, embedding_dim: usize, out_dim: usize, seq_len: usize, dropout: f32, device: Device) -> Result<Self> {
Ok(Self {
w_qkv: linear_no_bias(embedding_dim, 3*out_dim, vb.pp("w_qkv"))?,
d_model: Tensor::new(embedding_dim as f32, &device)?,
mask: Tensor::tril2(seq_len, DType::U32, &device)?,
dropout: Dropout::new(dropout),
device
})
}
}
定义forward方法:
rust
fn forward(&self, x: &Tensor, train: bool) -> Result<Tensor> {
let qkv = self.w_qkv.forward(x)?;
let (batch_size, seq_len, _) = qkv.dims3()?;
let qkv = qkv.reshape((batch_size, seq_len, 3, ()))?;
let q = qkv.get_on_dim(2, 0)?;
let q = q.reshape((batch_size, seq_len, ()))?;
let k = qkv.get_on_dim(2, 1)?;
let k = k.reshape((batch_size, seq_len, ()))?;
let v = qkv.get_on_dim(2, 2)?;
let v = v.reshape((batch_size, seq_len, ()))?;
let mut attn_score = q.matmul(&k.t()?)?;
// println!("attn_score: {:?}\n", attn_score.to_vec3::<f32>()?);
let dim = attn_score.rank() - 1;
let mask_dim = attn_score.dims()[dim];
let mask = self.mask.broadcast_as(attn_score.shape())?;
// println!("mask: {:?}\n", mask);
// println!("mask: {:?}\n", mask.to_vec3::<u32>()?);
attn_score = masked_fill(&attn_score, &mask, f32::NEG_INFINITY)?;
// println!("attn_score: {:?}\n", attn_score);
// println!("attn_score: {:?}\n", attn_score.to_vec3::<f32>()?);
let attn_score = attn_score.broadcast_div(&self.d_model.sqrt()?)?;
let attn_weights = ops::softmax(&attn_score, dim)?;
// println!("attn_weights: {:?}\n", attn_weights);
// println!("attn_weights: {:?}\n", attn_weights.to_vec3::<f32>()?);
let attn_weights = self.dropout.forward(&attn_weights, train)?;
// println!("dropout attn_weights: {:?}\n", attn_weights);
// println!("dropout attn_weights: {:?}\n", attn_weights.to_vec3::<f32>()?);
let attn_output = attn_weights.matmul(&v)?;
Ok(attn_output)
}
测试:
rust
fn main() -> Result<()> {
let device = Device::cuda_if_available(0)?;
let varmap = VarMap::new();
let vb = VarBuilder::from_varmap(&varmap, candle_core::DType::F32, &device);
let input = Tensor::from_vec(vec![0.43f32, 0.15, 0.89,
0.55, 0.87, 0.66,
0.57, 0.85, 0.64,
0.22, 0.58, 0.33,
0.77, 0.25, 0.10,
0.05, 0.80, 0.55,
0.43, 0.15, 0.89,
0.55, 0.87, 0.66,
0.57, 0.85, 0.64,
0.22, 0.58, 0.33,
0.77, 0.25, 0.10,
0.05, 0.80, 0.55], (2, 6, 3), &device)?;
let model = CausalAttention::new(vb.clone(), 3, 2, 6, 0.5, device.clone())?;
let output = model.forward(&input, true)?;
println!("output: {:?}\n", output);
println!("output: {:?}\n", output.to_vec3::<f32>()?);
Ok(())
}