为什么Transformer推理需要做KV缓存

一、我们先来回忆一下在transformer中KV在哪里出现过,都有什么作用?

α的计算过程:

这里引入三个向量:

图中的q为Query,用来匹配key值

图中的k为key,用来被Query匹配

图中的Value,是用来被进行加权平均的

这一步我们知道α就是K与Q的匹配程度,匹配程度越高则权重越大。

Wq、Wk、Wv这三个参数矩阵都需要从训练数据中学习

二、为什么要使用KV缓存

使用KV缓存是为减少生成token时候的矩阵运算。

因为在transformer中文本是逐个token生成的,每次新的预测会基于之前生成的所有token的上下文信息,这种对顺序数据的依赖会减慢生成过程,因为每次预测下一个token都需要重新处理序列中所有之前的token。

比说我们要预测第100个token,那么模型必须使用前面99个token的信息,这就需要对这些token做矩阵运算,而这个矩阵运算是非常耗时的。所以KV缓存就是为了减少这种耗时的矩阵运算,在推理过程中会把键和值放在缓存中,这样模型就可以在后续生成token的时候,直接访问缓存,而不需要重新计算

三、KV缓存具体是怎么实现的?

这两张图分别是有缓存和没有缓存的情况

因为是第一个token,所以有没有缓存计算过程没有差别

接下来到第二个token时,可以看到紫色标出的就是缓存下来的key和value,在没有缓存的情况下KV都要重新计算。如果做了缓存就只需要把历史的KV拿出来,同时只计算最新的那个token的KV再拼接成一个大矩阵就行了。

对比一下,有缓存的计算量明显减少了一半

那后面的token一样,每次历史计算过的键和值就不用重新计算了,这样就极大减少了self attention 的计算量,从序列长度的二次方直接变成了线性

相关推荐
Dongsheng_20193 小时前
【汽车篇】AI深度学习在汽车零部件外观检测——机电轴承的应用
人工智能·深度学习·汽车
江瀚视野3 小时前
汽车价格战全面熄火了?不卷价格该卷什么?
人工智能·自动驾驶
资讯全球4 小时前
2025年智慧差旅平台推荐
人工智能
en-route4 小时前
从零开始学神经网络——LSTM(长短期记忆网络)
人工智能·深度学习·lstm
视觉语言导航4 小时前
CVPR-2025 | 具身导航指令高效生成!MAPInstructor:基于场景图的导航指令生成Prompt调整策略
人工智能·机器人·具身智能
wanhengidc5 小时前
云手机与人工智能之间的关系
人工智能·智能手机
Sic_MOS_780168245 小时前
超高密度2kW GaN基低压电机驱动器的设计
人工智能·经验分享·汽车·集成测试·硬件工程·能源
老坛程序员5 小时前
抓包解析MCP协议:基于JSON-RPC的MCP host与MCP server的交互
人工智能·网络协议·rpc·json·交互
努力毕业的小土博^_^5 小时前
【深度学习|学习笔记】详细讲解一下 深度学习训练过程中 为什么 Momentum 可以加速训练?
人工智能·笔记·深度学习·学习·momentum