为什么Transformer推理需要做KV缓存

一、我们先来回忆一下在transformer中KV在哪里出现过,都有什么作用?

α的计算过程:

这里引入三个向量:

图中的q为Query,用来匹配key值

图中的k为key,用来被Query匹配

图中的Value,是用来被进行加权平均的

这一步我们知道α就是K与Q的匹配程度,匹配程度越高则权重越大。

Wq、Wk、Wv这三个参数矩阵都需要从训练数据中学习

二、为什么要使用KV缓存

使用KV缓存是为减少生成token时候的矩阵运算。

因为在transformer中文本是逐个token生成的,每次新的预测会基于之前生成的所有token的上下文信息,这种对顺序数据的依赖会减慢生成过程,因为每次预测下一个token都需要重新处理序列中所有之前的token。

比说我们要预测第100个token,那么模型必须使用前面99个token的信息,这就需要对这些token做矩阵运算,而这个矩阵运算是非常耗时的。所以KV缓存就是为了减少这种耗时的矩阵运算,在推理过程中会把键和值放在缓存中,这样模型就可以在后续生成token的时候,直接访问缓存,而不需要重新计算

三、KV缓存具体是怎么实现的?

这两张图分别是有缓存和没有缓存的情况

因为是第一个token,所以有没有缓存计算过程没有差别

接下来到第二个token时,可以看到紫色标出的就是缓存下来的key和value,在没有缓存的情况下KV都要重新计算。如果做了缓存就只需要把历史的KV拿出来,同时只计算最新的那个token的KV再拼接成一个大矩阵就行了。

对比一下,有缓存的计算量明显减少了一半

那后面的token一样,每次历史计算过的键和值就不用重新计算了,这样就极大减少了self attention 的计算量,从序列长度的二次方直接变成了线性

相关推荐
智界前沿2 分钟前
集之互动AIGC广告大片:以“高可控”技术重构品牌视觉想象
人工智能·重构·aigc
牛客企业服务17 分钟前
AI面试选型策略:9大维度避坑指南
人工智能·面试·职场和发展
Yeats_Liao22 分钟前
MindSpore开发之路(四):核心数据结构Tensor
数据结构·人工智能·机器学习
许泽宇的技术分享1 小时前
解密Anthropic的MCP Inspector:从协议调试到AI应用开发的全栈架构之旅
人工智能·架构·typescript·mcp·ai开发工具
nopSled1 小时前
AlphaAvatar:一个基于 LiveKit 的插件化实时 Omni-Avatar 架构
人工智能·语言模型
lovingsoft1 小时前
如何看自己笔记本是不是ARM64
人工智能·测试管理
美狐美颜sdk1 小时前
AI加持下的直播美颜sdk:动态贴纸功能的未来形态前瞻
人工智能·美颜sdk·直播美颜sdk·第三方美颜sdk·人脸美型sdk
火山引擎开发者社区1 小时前
Force 开发者日:火山引擎 Agent 开发者生态全面升级
人工智能·火山引擎
智算菩萨1 小时前
从对话系统到对话式智能体:对话式AI发展综述与2025年前沿整合
人工智能
yiersansiwu123d1 小时前
AI时代的就业变革:在替代与创造中寻找平衡之道
人工智能