为什么Transformer推理需要做KV缓存

一、我们先来回忆一下在transformer中KV在哪里出现过,都有什么作用?

α的计算过程:

这里引入三个向量:

图中的q为Query,用来匹配key值

图中的k为key,用来被Query匹配

图中的Value,是用来被进行加权平均的

这一步我们知道α就是K与Q的匹配程度,匹配程度越高则权重越大。

Wq、Wk、Wv这三个参数矩阵都需要从训练数据中学习

二、为什么要使用KV缓存

使用KV缓存是为减少生成token时候的矩阵运算。

因为在transformer中文本是逐个token生成的,每次新的预测会基于之前生成的所有token的上下文信息,这种对顺序数据的依赖会减慢生成过程,因为每次预测下一个token都需要重新处理序列中所有之前的token。

比说我们要预测第100个token,那么模型必须使用前面99个token的信息,这就需要对这些token做矩阵运算,而这个矩阵运算是非常耗时的。所以KV缓存就是为了减少这种耗时的矩阵运算,在推理过程中会把键和值放在缓存中,这样模型就可以在后续生成token的时候,直接访问缓存,而不需要重新计算

三、KV缓存具体是怎么实现的?

这两张图分别是有缓存和没有缓存的情况

因为是第一个token,所以有没有缓存计算过程没有差别

接下来到第二个token时,可以看到紫色标出的就是缓存下来的key和value,在没有缓存的情况下KV都要重新计算。如果做了缓存就只需要把历史的KV拿出来,同时只计算最新的那个token的KV再拼接成一个大矩阵就行了。

对比一下,有缓存的计算量明显减少了一半

那后面的token一样,每次历史计算过的键和值就不用重新计算了,这样就极大减少了self attention 的计算量,从序列长度的二次方直接变成了线性

相关推荐
水如烟6 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学6 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19826 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮6 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手6 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋6 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-7 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView7 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能
Imm7777 小时前
中国知名的车膜品牌推荐几家
人工智能·python
风静如云7 小时前
Claude Code:进入dash模式
人工智能