数据分析-图2-图像对象设置参数与子图

复制代码
from matplotlib import pyplot as mp
mp.figure('A figure',facecolor='gray')
mp.plot([0,1],[1,2])
mp.figure('B figure',facecolor='lightgray')
mp.plot([1,2],[2,1])
#如果figure中标题已创建,则不会新建窗口,
#而是将旧窗口设置为当前窗口
mp.figure('A figure',facecolor='gray')
mp.plot([1,2],[2,1])
#设置窗口的参数
mp.title('A figure',fontsize=18)
mp.xlabel('time',fontsize=14)
mp.ylabel('price',fontsize=14)
mp.tick_params(labelsize=10)
mp.grid(linestyle=":")
mp.tight_layout()
mp.show()

子图subplot

复制代码
import numpy as np
import matplotlib.pyplot as mp
mp.figure("Subplot",facecolor='lightgray')
for i in range(1,10):
	mp.subplot(3,3,i)
	mp.text(0.5,0.5,i,ha='center',va='center',size=36,alpha=0.6)
	mp.xticks([])
	mp.yticks([])
	mp.tight_layout()
mp.show()

网格式子图Grid

复制代码
import numpy as np
import matplotlib.pyplot as mp
import matplotlib.gridspec as mg

mp.figure('GridLayout',facecolor='lightgray')
gs=mg.GridSpec(3,3)
mp.subplot(gs[0,:2])
mp.xticks([])
mp.yticks([])
mp.text(0.5,0.5,'1',ha='center',va='center',size=26,alpha=0.5,color='red')
mp.subplot(gs[:2,2])
mp.xticks([])
mp.yticks([])
mp.text(0.5,0.5,'2',ha='center',va='center',size=26,alpha=0.5,color='red')
mp.subplot(gs[1,1])
mp.xticks([])
mp.yticks([])
mp.text(0.5,0.5,'3',ha='center',va='center',size=26,alpha=0.5,color='red')
mp.subplot(gs[1:3,0])
mp.xticks([])
mp.yticks([])
mp.text(0.5,0.5,'4',ha='center',va='center',size=26,alpha=0.5,color='red')
mp.subplot(gs[2,1:])
mp.xticks([])
mp.yticks([])
mp.text(0.5,0.5,'5',ha='center',va='center',size=26,alpha=0.5,color='red')

mp.tight_layout()
mp.show()

自由式布局

复制代码
from matplotlib import pyplot as mp
mp.figure('FlowLayout',facecolor='lightgray')
mp.axes([0.03,0.5,0.94,0.3])
mp.text(0.5,0.5,'1',ha='center',va='center',size=36)
mp.axes([0.03,0.05,0.94,0.40])
mp.text(0.5,0.5,'1',ha='center',va='center',size=36)
mp.xticks([])
mp.yticks([])
mp.show()
复制代码
import numpy as np
from matplotlib import pyplot as mp
mp.figure('GridLine',facecolor='lightgray')
ax=mp.gca()
#修改刻度定位器
ax.xaxis.set_major_locator(mp.MultipleLocator(1))#X轴的主刻度为mp.MultipleLocator(1)
ax.xaxis.set_minor_locator(mp.MultipleLocator(0.1))#次刻度为0.1

ax.yaxis.set_major_locator(mp.MultipleLocator(200))#y轴的主刻度为mp.MultipleLocator(1)
ax.yaxis.set_minor_locator(mp.MultipleLocator(50))#次刻度为50

ax.grid(which='major',axis='both',
	color='orangered',linewidth=0.75)
ax.grid(which='minor',axis='both',
	color='orangered',linewidth=0.25)
#绘制曲线
y=np.array([1,10,100,1000,100,10,1])
mp.plot(y,'o-',color='dodgerblue')
# mp.subplot(211)
# mp.title('normal',fontsize=20)
# mp.ylabel('y',fontsize=14)
# ax=mp.gca()
mp.show()
复制代码
import numpy as np
from matplotlib import pyplot as mp
mp.figure('GridLine',facecolor='lightgray')
ax=mp.gca()
#修改刻度定位器
ax.xaxis.set_major_locator(mp.MultipleLocator(1))#X轴的主刻度为mp.MultipleLocator(1)
ax.xaxis.set_minor_locator(mp.MultipleLocator(0.1))#次刻度为0.1

ax.yaxis.set_major_locator(mp.MultipleLocator(200))#y轴的主刻度为mp.MultipleLocator(1)
ax.yaxis.set_minor_locator(mp.MultipleLocator(50))#次刻度为50

ax.grid(which='major',axis='both',
	color='orangered',linewidth=0.75)
ax.grid(which='minor',axis='both',
	color='orangered',linewidth=0.25)
#绘制曲线
y=np.array([1,10,100,1000,100,10,1])
mp.semilogy(y,'o-',color='dodgerblue')
# mp.subplot(211)
# mp.title('normal',fontsize=20)
# mp.ylabel('y',fontsize=14)
# ax=mp.gca()
mp.show()

semilogy对半数坐标

散点图scatter

复制代码
import numpy as np
import matplotlib.pyplot as mp 

#随机生成一组数据
n=300
height=np.random.normal(175,5,n)
weight=np.random.normal(70,7,n)

mp.figure('Persons',facecolor='lightgray')
mp.title('Persons',fontsize=18)
mp.xlabel("height",fontsize=14)
mp.ylabel("weight",fontsize=14)
mp.grid(linestyle=":")
d=(height-175)**2+(weight-70)**2
mp.scatter(
	# height,weight,marker='o',s=70,label='persons',color='dodgerblue')
	height,weight,marker='o',s=70,label='persons',c=d,cmap='jet_r')
mp.legend()
mp.show()

颜色映射图:

相关推荐
阿什么名字不会重复呢20 小时前
在线工具+网页平台来学习和操作Python与Excel相关技能
python·数据分析
charlee441 天前
PandasAI连接LLM进行智能数据分析
ai·数据分析·llm·pandasai·deepseek
Re_Yang091 天前
数学专业转型数据分析竞争力发展报告
数据挖掘·数据分析
workflower1 天前
数据分析前景
算法·数据挖掘·数据分析·需求分析·软件需求
我要学习别拦我~2 天前
kaggle分析项目:steam付费游戏数据分析
python·游戏·数据分析
海哥编程2 天前
Python 数据分析(二):Matplotlib 绘图
python·数据分析·matplotlib
Watermelo6172 天前
极致的灵活度满足工程美学:用Vue Flow绘制一个完美流程图
前端·javascript·vue.js·数据挖掘·数据分析·流程图·数据可视化
Watermelo6172 天前
Web Worker:让前端飞起来的隐形引擎
前端·javascript·vue.js·数据挖掘·数据分析·node.js·es6
SickeyLee3 天前
BI 系统数据看板全解析:让数据可视化驱动业务决策
信息可视化·数据挖掘·数据分析
万能的小裴同学3 天前
星痕共鸣数据分析2
c++·数据分析