如何使用 Qwen3 实现 Agentic RAG?

今天,我们将学习如何部署由阿里巴巴最新Qwen 3驱动的Agentic RAG。

这里是我们的工具栈:

  • CrewAI用于代理编排。

  • Firecrawl用于网络搜索。

  • LightningAI的LitServe用于部署。

顶部的视频展示了这一过程。

图表显示了我们的Agentic RAG流程:

  • 检索代理接受用户查询。

  • 它调用相关工具(Firecrawl网络搜索或向量DB工具)以获取上下文并生成见解。

  • 写作代理生成响应。

接下来,让我们实现并部署它!

代码稍后在问题中链接。

这里是为我们的Agentic RAG服务的完整代码。

  • setup方法编排代理。

  • decode_request方法准备输入。

  • predict方法调用Crew。

  • encode_response方法发送响应回来。

让我们下面一步一步理解它

Set up LLM

CrewAI与所有流行的LLMs和提供商无缝集成。

这里是通过Ollama设置本地Qwen 3的方式。

Define Research Agent and Task

这个代理接受用户查询,并使用向量DB工具和由Firecrawl驱动的网络搜索工具检索相关上下文。

再次,在LitServe的setup()方法中放入这个:

Define Writer Agent and Task

接下来,写作代理接受研究者代理的见解以生成响应。

我们再次在LitServe的setup方法中添加这个:

Set up the Crew

一旦我们定义了代理及其任务,我们使用CrewAI将它们编排成一个团队,并将其放入一个设置方法中。

Decode request

我们已经编排了Agentic RAG工作流程,该工作流程将在收到请求时执行。

接下来,从收到的请求体中提取用户查询。

检查下面突出显示的代码:

Predict

我们使用解码的用户查询,并将其传递给之前定义的Crew,以从模型生成响应。

检查下面突出显示的代码:

Encode response

这里,我们可以对响应进行后处理并将其发送回客户端。

注意:LitServe内部按顺序调用这些方法:decode_requestpredictencode_request

检查下面突出显示的代码:

我们完成了服务器代码。

接下来,我们有基本的客户端代码来调用我们使用requests Python库创建的API:

完成!

我们已经使用LitServe部署了完全私有的Qwen 3 Agentic RAG。这里是部署的Qwen3 Agentic RAG的回顾。

原文地址:https://blog.dailydoseofds.com/p/deploy-a-qwen-3-agentic-rag

相关推荐
多巴胺与内啡肽.几秒前
OpenCV进阶操作:光流估计
人工智能·opencv·计算机视觉
妄想成为master16 分钟前
计算机视觉----时域频域在图像中的意义、傅里叶变换在图像中的应用、卷积核的频域解释
人工智能·计算机视觉·傅里叶
NLP小讲堂32 分钟前
LLaMA Factory 深度调参
人工智能·机器学习
不懂嵌入式39 分钟前
基于深度学习的水果识别系统设计
人工智能·深度学习
江小皮不皮1 小时前
为何选择MCP?自建流程与Anthropic MCP的对比分析
人工智能·llm·nlp·aigc·sse·mcp·fastmcp
GIS数据转换器1 小时前
当三维地理信息遇上气象预警:电网安全如何实现“先知先觉”?
人工智能·科技·安全·gis·智慧城市·交互
网易易盾1 小时前
AIGC时代的内容安全:AI检测技术如何应对新型风险挑战?
人工智能·安全·aigc
工头阿乐1 小时前
PyTorch中的nn.Embedding应用详解
人工智能·pytorch·embedding
alpszero1 小时前
YOLO11解决方案之物体模糊探索
人工智能·python·opencv·计算机视觉·yolo11
vlln1 小时前
适应性神经树:当深度学习遇上决策树的“生长法则”
人工智能·深度学习·算法·决策树·机器学习