如何使用 Qwen3 实现 Agentic RAG?

今天,我们将学习如何部署由阿里巴巴最新Qwen 3驱动的Agentic RAG。

这里是我们的工具栈:

  • CrewAI用于代理编排。

  • Firecrawl用于网络搜索。

  • LightningAI的LitServe用于部署。

顶部的视频展示了这一过程。

图表显示了我们的Agentic RAG流程:

  • 检索代理接受用户查询。

  • 它调用相关工具(Firecrawl网络搜索或向量DB工具)以获取上下文并生成见解。

  • 写作代理生成响应。

接下来,让我们实现并部署它!

代码稍后在问题中链接。

这里是为我们的Agentic RAG服务的完整代码。

  • setup方法编排代理。

  • decode_request方法准备输入。

  • predict方法调用Crew。

  • encode_response方法发送响应回来。

让我们下面一步一步理解它

Set up LLM

CrewAI与所有流行的LLMs和提供商无缝集成。

这里是通过Ollama设置本地Qwen 3的方式。

Define Research Agent and Task

这个代理接受用户查询,并使用向量DB工具和由Firecrawl驱动的网络搜索工具检索相关上下文。

再次,在LitServe的setup()方法中放入这个:

Define Writer Agent and Task

接下来,写作代理接受研究者代理的见解以生成响应。

我们再次在LitServe的setup方法中添加这个:

Set up the Crew

一旦我们定义了代理及其任务,我们使用CrewAI将它们编排成一个团队,并将其放入一个设置方法中。

Decode request

我们已经编排了Agentic RAG工作流程,该工作流程将在收到请求时执行。

接下来,从收到的请求体中提取用户查询。

检查下面突出显示的代码:

Predict

我们使用解码的用户查询,并将其传递给之前定义的Crew,以从模型生成响应。

检查下面突出显示的代码:

Encode response

这里,我们可以对响应进行后处理并将其发送回客户端。

注意:LitServe内部按顺序调用这些方法:decode_requestpredictencode_request

检查下面突出显示的代码:

我们完成了服务器代码。

接下来,我们有基本的客户端代码来调用我们使用requests Python库创建的API:

完成!

我们已经使用LitServe部署了完全私有的Qwen 3 Agentic RAG。这里是部署的Qwen3 Agentic RAG的回顾。

原文地址:https://blog.dailydoseofds.com/p/deploy-a-qwen-3-agentic-rag

相关推荐
大千AI助手7 分钟前
概率单位回归(Probit Regression)详解
人工智能·机器学习·数据挖掘·回归·大千ai助手·概率单位回归·probit回归
adjusttraining9 分钟前
毁掉孩子视力不是电视和手机,两个隐藏很深因素,很多家长并不知
深度学习·其他
狂炫冰美式37 分钟前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
LCG元1 小时前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI1 小时前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来2 小时前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
KG_LLM图谱增强大模型2 小时前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
声网2 小时前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动
caiyueloveclamp2 小时前
【功能介绍03】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI溯源篇】
人工智能·信息可视化·powerpoint·ai生成ppt·aippt
q***48412 小时前
Vanna AI:告别代码,用自然语言轻松查询数据库,领先的RAG2SQL技术让结果更智能、更精准!
人工智能·microsoft