如何使用 Qwen3 实现 Agentic RAG?

今天,我们将学习如何部署由阿里巴巴最新Qwen 3驱动的Agentic RAG。

这里是我们的工具栈:

  • CrewAI用于代理编排。

  • Firecrawl用于网络搜索。

  • LightningAI的LitServe用于部署。

顶部的视频展示了这一过程。

图表显示了我们的Agentic RAG流程:

  • 检索代理接受用户查询。

  • 它调用相关工具(Firecrawl网络搜索或向量DB工具)以获取上下文并生成见解。

  • 写作代理生成响应。

接下来,让我们实现并部署它!

代码稍后在问题中链接。

这里是为我们的Agentic RAG服务的完整代码。

  • setup方法编排代理。

  • decode_request方法准备输入。

  • predict方法调用Crew。

  • encode_response方法发送响应回来。

让我们下面一步一步理解它

Set up LLM

CrewAI与所有流行的LLMs和提供商无缝集成。

这里是通过Ollama设置本地Qwen 3的方式。

Define Research Agent and Task

这个代理接受用户查询,并使用向量DB工具和由Firecrawl驱动的网络搜索工具检索相关上下文。

再次,在LitServe的setup()方法中放入这个:

Define Writer Agent and Task

接下来,写作代理接受研究者代理的见解以生成响应。

我们再次在LitServe的setup方法中添加这个:

Set up the Crew

一旦我们定义了代理及其任务,我们使用CrewAI将它们编排成一个团队,并将其放入一个设置方法中。

Decode request

我们已经编排了Agentic RAG工作流程,该工作流程将在收到请求时执行。

接下来,从收到的请求体中提取用户查询。

检查下面突出显示的代码:

Predict

我们使用解码的用户查询,并将其传递给之前定义的Crew,以从模型生成响应。

检查下面突出显示的代码:

Encode response

这里,我们可以对响应进行后处理并将其发送回客户端。

注意:LitServe内部按顺序调用这些方法:decode_requestpredictencode_request

检查下面突出显示的代码:

我们完成了服务器代码。

接下来,我们有基本的客户端代码来调用我们使用requests Python库创建的API:

完成!

我们已经使用LitServe部署了完全私有的Qwen 3 Agentic RAG。这里是部署的Qwen3 Agentic RAG的回顾。

原文地址:https://blog.dailydoseofds.com/p/deploy-a-qwen-3-agentic-rag

相关推荐
Ulana16 分钟前
计算机基础10大高频考题解析
java·人工智能·算法
windfantasy199018 分钟前
NCT与GESP哪个更好?线上监考与线下考点的便利性对比
人工智能
执笔论英雄19 分钟前
【LORA】
人工智能
Jerryhut32 分钟前
Bev感知特征空间算法
人工智能
xian_wwq43 分钟前
【学习笔记】基于人工智能的火电机组全局性能一体化优化研究
人工智能·笔记·学习·火电
春风LiuK1 小时前
虚实无界:VRAR如何重塑课堂与突破研究边界
人工智能·程序人生
歌_顿1 小时前
Embedding 模型word2vec/glove/fasttext/elmo/doc2vec/infersent学习总结
人工智能·算法
胡萝卜3.01 小时前
深入C++可调用对象:从function包装到bind参数适配的技术实现
开发语言·c++·人工智能·机器学习·bind·function·包装器
Echo_NGC22371 小时前
【KL 散度】深入理解 Kullback-Leibler Divergence:AI 如何衡量“像不像”的问题
人工智能·算法·机器学习·散度·kl
愤怒的可乐1 小时前
从零构建大模型智能体:OpenAI Function Calling智能体实战
人工智能·大模型·智能体