spark-cache模式

一、RDD持久化

1.什么时候该使用持久化(缓存)

  1. RDD cache & persist 缓存

  2. RDD CheckPoint 检查点

  3. cache & persist & checkpoint 的特点和区别

特点

区别

二、cache & persist 的持久化级别及策略选择

Spark的几种持久化级别:

1.MEMORY_ONLY

2.MEMORY_AND_DISK

3.MEMORY_ONLY_SER

4.MEMORY_AND_DISK_SER

5.DISK_ONLY

6.MEMORY_ONLY_2, MEMORY_AND_DISK_2, 等等

相关推荐
min18112345621 小时前
深度伪造内容的检测与溯源技术
大数据·网络·人工智能
武子康21 小时前
大数据-209 深度理解逻辑回归(Logistic Regression)与梯度下降优化算法
大数据·后端·机器学习
小北方城市网21 小时前
分布式锁实战指南:从选型到落地,避开 90% 的坑
java·数据库·redis·分布式·python·缓存
数据智研1 天前
【数据分享】(2005–2016年)基于水资源承载力的华北地区降水与地下水要素数据
大数据·人工智能·信息可视化·数据分析
范桂飓1 天前
大模型分布式训练框架 Megatron-LM
人工智能·分布式
TDengine (老段)1 天前
TDengine Python 连接器入门指南
大数据·数据库·python·物联网·时序数据库·tdengine·涛思数据
亚古数据1 天前
亚古数据:查询斯里兰卡公司可以获取什么文件和信息?
大数据·亚古数据·斯里兰卡公司查询
WLJT1231231231 天前
守护自然与滋养民生的绿色之路
大数据·安全
min1811234561 天前
PC端零基础跨职能流程图制作教程
大数据·人工智能·信息可视化·架构·流程图
静听松涛1331 天前
中文PC端多人协作泳道图制作平台
大数据·论文阅读·人工智能·搜索引擎·架构·流程图·软件工程