spark-cache模式

一、RDD持久化

1.什么时候该使用持久化(缓存)

  1. RDD cache & persist 缓存

  2. RDD CheckPoint 检查点

  3. cache & persist & checkpoint 的特点和区别

特点

区别

二、cache & persist 的持久化级别及策略选择

Spark的几种持久化级别:

1.MEMORY_ONLY

2.MEMORY_AND_DISK

3.MEMORY_ONLY_SER

4.MEMORY_AND_DISK_SER

5.DISK_ONLY

6.MEMORY_ONLY_2, MEMORY_AND_DISK_2, 等等

相关推荐
uesowys4 小时前
Apache Spark算法开发指导-One-vs-Rest classifier
人工智能·算法·spark
AI_56784 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
CRzkHbaXTmHw5 小时前
探索Flyback反激式开关电源的Matlab Simulink仿真之旅
大数据
七夜zippoe5 小时前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
盟接之桥5 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造
忆~遂愿5 小时前
ops-cv 算子库深度解析:面向视觉任务的硬件优化与数据布局(NCHW/NHWC)策略
java·大数据·linux·人工智能
忆~遂愿6 小时前
GE 引擎与算子版本控制:确保前向兼容性与图重写策略的稳定性
大数据·开发语言·docker
米羊1216 小时前
已有安全措施确认(上)
大数据·网络
人道领域7 小时前
AI抢人大战:谁在收割你的红包
大数据·人工智能·算法
qq_12498707538 小时前
基于Hadoop的信贷风险评估的数据可视化分析与预测系统的设计与实现(源码+论文+部署+安装)
大数据·人工智能·hadoop·分布式·信息可视化·毕业设计·计算机毕业设计