spark-cache模式

一、RDD持久化

1.什么时候该使用持久化(缓存)

  1. RDD cache & persist 缓存

  2. RDD CheckPoint 检查点

  3. cache & persist & checkpoint 的特点和区别

特点

区别

二、cache & persist 的持久化级别及策略选择

Spark的几种持久化级别:

1.MEMORY_ONLY

2.MEMORY_AND_DISK

3.MEMORY_ONLY_SER

4.MEMORY_AND_DISK_SER

5.DISK_ONLY

6.MEMORY_ONLY_2, MEMORY_AND_DISK_2, 等等

相关推荐
不爱学英文的码字机器3 分钟前
数据网格的革命:从集中式到分布式的数据管理新范式
分布式
Tianyanxiao14 分钟前
华为×小鹏战略合作:破局智能驾驶深水区的商业逻辑深度解析
大数据·人工智能·经验分享·华为·金融·数据分析
线条13 小时前
大数据 ETL 工具 Sqoop 深度解析与实战指南
大数据·sqoop·etl
优秀的颜3 小时前
计算机基础知识(第五篇)
java·开发语言·分布式
mazhafener1239 小时前
智慧照明:集中控制器、单双灯控制器与智慧灯杆网关的高效协同
大数据
打码人的日常分享10 小时前
物联网智慧医院建设方案(PPT)
大数据·物联网·架构·流程图·智慧城市·制造
棠十一11 小时前
Rabbitmq
分布式·docker·rabbitmq
Lansonli11 小时前
大数据Spark(六十一):Spark基于Standalone提交任务流程
大数据·分布式·spark
Rverdoser12 小时前
电脑硬盘分几个区好
大数据
傻啦嘿哟12 小时前
Python 数据分析与可视化实战:从数据清洗到图表呈现
大数据·数据库·人工智能