初探机器学习与深度学习

本文以水果摊销量预测为例,揭示机器学习通过数据训练模型的核心逻辑,对比传统编程规则驱动模式。解析分类(疾病诊断)与回归(房价预测)两大任务的技术本质,类比前端开发中的类型定义与图表拟合。深入探讨深度学习自动提取特征的能力,突破人工定义局限,并梳理AI从规则逻辑、专家系统、深度学习到大模型通才时代的四次技术跃迁。

一、引子:生活中的预测需求

"清晨的水果摊前,你发现隔壁老王总能在闭店前精准清货。

他的秘密不是经验,而是一套数据预测系统------这正是机器学习的核心能力。"

二、机器学习是什么?

类比解释:

"机器学习就像教孩子认水果:

  1. 你反复展示苹果和橘子的例子(输入数据)

  2. 孩子总结出'圆形+红色=苹果'的规律(模型训练)

  3. 当看到新水果时,孩子能正确分类(预测应用)

▲ 传统编程是'规则→结果',机器学习是'数据→规律'"

三、两大核心任务详解

1. 分类问题:分门别类的艺术

生活场景:

医院化验单的阴阳性判断(是/否)、快递分拣系统(省份/城市)

技术本质:

"给数据打标签的筛子"

  • 输入:带有特征的数据(如化验指标值)

  • 输出:有限个明确类别(阳性/阴性)

前端开发者共鸣点:

"就像用TypeScript定义枚举类型:

复制代码
type WeatherType = 'Sunny' | 'Rainy' | 'Cloudy';

只不过机器学习能自动推导出分类规则"

2. 回归问题:数值预测的奥秘

生活场景:

二手房价格评估、股票走势预测

技术本质:

"寻找变量间的数学关系"

  • 输入:特征数据(如房屋面积、地段)

  • 输出:连续数值(如每平米单价)

前端类比:

"类似用Chart.js拟合数据趋势线,但机器学习能处理多维复杂关系"

四、深度学习:让机器自己找规律

深度学习是机器学习的一种方法,核心是不需要为了增加模型正确率而人为加工数据,反而是模型自己提取"特征量"自己学习,这个区别于其他方法的不同

传统机器学习痛点:"就像强迫人类用公式描述'苹果甜度':

  • 需要手动定义:糖度≥13%、酸度≤0.5%...(特征工程)

  • 遇到榴莲直接失效(复杂特征难量化)"

深度学习突破:"赋予机器'自主学习'能力:

  1. 输入原始数据(如苹果照片)

  2. 神经网络自动提取关键特征(颜色渐变、纹理走向)

  3. 输出分类/回归结果

它的划时代性就来自于他可以自己提取最适合的特征量,例如各种图像识别和语音识别等领域都依着大幅度改善,甚至已经超越了人类

五、AI发展简史:4次技术跃迁

时间轴图示:

复制代码
1950s 逻辑时代 → 1980s 知识时代 → 2010s 数据时代 → 2020s 通才时代 └─ 规则编程 → 专家系统 → 深度学习 → 大模型涌现

1. 第一次跃迁:逻辑时代(1950s-1970s)

技术符号:if (condition) { action }

  • 突破:用代码规则模拟人类推理

    • 代表作:IBM深蓝(1997击败国际象棋冠军)
  • 局限:

    // 遇到规则外情况直接崩溃 if (棋局状态 === '国际象棋') { 执行走法(); } else { throw new Error('未知游戏类型'); // 遇到围棋直接报错 }

2. 第二次跃迁:知识时代(1980s-2000s)

技术符号:知识库 = [{症状: '发烧', 诊断: '流感'}, ...]

  • 突破:将专家经验转化为结构化规则

    • 代表作:MYCIN医疗诊断系统(准确率69%)
  • 局限:

复制代码
  // 维护成本随规则数量指数增长 const 诊断规则库 = [ { 症状: '咳嗽', 诊断: '感冒' }, { 症状: '流涕', 诊断: '过敏' }, // 新增1000条规则后系统开始卡顿... ];

3. 第三次跃迁:数据时代(2010s-2019)

技术符号:神经网络.自动提取特征()

  • 突破:用数据代替人工规则

    • 代表作:AlexNet(2012图像识别错误率骤降)
  • 开发者痛点:

    // 如同需要为不同屏幕尺寸写多套CSS const 猫狗分类器 = 训练模型(专用数据集); // 想识别鸟类?得重新收集数据再训练!

4. 第四次跃迁:通才时代(2020s-至今)

技术符号:大模型.处理(任意模态输入)

  • 突破:单一模型解决多领域任务

    • 代表作:GPT-4(文本/代码/图像多模态理解)
  • 技术特性:

复制代码
  // 通用接口示例 const 大模型API = { 输入: ['文本', '图片', '语音', '视频'], 输出: ['生成', '推理', '翻译', '编程'], 核心能力: '通过提示词(Prompt)控制行为' }; const 需求文档 = '帮我用React生成登录页面'; const 代码 = await 大模型.生成(需求文档);
相关推荐
U***498317 分钟前
机器学习趋势
人工智能·机器学习
lusasky23 分钟前
大模型混合多语言理解的原理
人工智能·神经网络·机器学习·nlp
AI即插即用25 分钟前
即插即用系列 | 2025 SOTA Strip R-CNN 实战解析:用于遥感目标检测的大条带卷积
人工智能·pytorch·深度学习·目标检测·计算机视觉·cnn·智慧城市
冬虫夏草199330 分钟前
在transformer中使用househoulder reflection(mirror transform)替代layernorm
人工智能·transformer
沛沛老爹41 分钟前
AI入门之GraphRAG企业级部署性能优化策略:从索引到检索的全链路提效实践
人工智能·ai·性能优化·rag·入门知识·graphrag·lightrag
FreeBuf_43 分钟前
突破IAM孤岛:身份安全架构为何对保护AI与非人类身份至关重要
人工智能·安全·安全架构
大千AI助手1 小时前
平衡二叉树:机器学习中高效数据组织的基石
数据结构·人工智能·机器学习·二叉树·大模型·平衡二叉树·大千ai助手
IT油腻大叔1 小时前
DeepSeek-多层注意力计算机制理解
python·深度学习·机器学习
z***I3941 小时前
机器学习难点
人工智能·机器学习
U***e631 小时前
机器学习超参数调优:GridSearch
人工智能·机器学习