OpenCV CUDA模块中矩阵操作-----矩阵最大最小值查找函数

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

在OpenCV的CUDA模块中,矩阵最大最小值查找操作用于快速获取矩阵中的全局最小值、最大值及其位置。这些函数对于图像处理任务特别有用,例如特征检测和阈值处理。

主要函数

1. [查找矩阵的全局最小值和最大值] cv::cuda::minMax

原型
cpp 复制代码
void cv::cuda::minMax
(
    InputArray src,          // 输入数组(通常是 cv::cuda::GpuMat)
    double* minVal,          // 输出指针,用于接收最小值
    double* maxVal,          // 输出指针,用于接收最大值
    InputArray mask = noArray()  // 可选掩码,默认为无掩码
);
参数
  • src: 输入矩阵。
  • minVal: 输出指针,用于接收最小值。
  • maxVal: 输出指针,用于接收最大值。
  • mask: 可选掩码,指定哪些元素参与计算,默认为无掩码。

2. [查找矩阵的全局最小值、最大值及其位置] cv::cuda::minMaxLoc

原型
cpp 复制代码
void cv::cuda::minMaxLoc
(
    InputArray src,           // 输入数组
    double* minVal,           // 输出指针,用于接收最小值
    double* maxVal,           // 输出指针,用于接收最大值
    Point* minLoc,            // 输出指针,用于接收最小值的位置坐标
    Point* maxLoc,            // 输出指针,用于接收最大值的位置坐标
    InputArray mask = noArray()  // 可选掩码
);
参数
  • src: 输入矩阵。
  • minVal: 输出指针,用于接收最小值。
  • maxVal: 输出指针,用于接收最大值。
  • minLoc: 输出指针,用于接收最小值的位置坐标。
  • maxLoc: 输出指针,用于接收最大值的位置坐标。
  • mask: 可选掩码。

3. [将最小值和最大值写入输出数组] cv::cuda::findMinMax

原型
cpp 复制代码
void cv::cuda::findMinMax
(
    InputArray src,          // 输入数组
    OutputArray dst,         // 输出数组,类型为 cv::Scalar,包含最小值和最大值
    InputArray mask = noArray(),  // 可选掩码
    Stream& stream = Stream::Null()  // CUDA流用于异步执行(可选)
);
参数
  • src: 输入矩阵。
  • dst: 输出数组,类型为cv::Scalar,包含最小值和最大值。
  • mask: 可选掩码。
  • stream: CUDA流用于异步执行(可选)。

4. [同时获取最小最大值和它们的位置] cv::cuda::findMinMaxLoc

原型
cpp 复制代码
void cv::cuda::findMinMaxLoc
(
    InputArray src,          // 输入数组
    OutputArray minMaxVals,  // 输出数组,包含最小值和最大值
    OutputArray loc,         // 输出数组,包含最小值和最大值的位置
    InputArray mask = noArray(),  // 可选掩码
    Stream& stream = Stream::Null()  // CUDA流用于异步执行(可选)
);
参数
  • src: 输入矩阵。
  • minMaxVals: 输出数组,包含最小值和最大值。
  • loc: 输出数组,包含最小值和最大值的位置。
  • mask: 可选掩码。
  • stream: CUDA流用于异步执行(可选)。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/cudaarithm.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    // 创建测试矩阵(4x4 浮点型)
    cv::Mat h_mat = ( cv::Mat_< float >( 4, 4 ) << 1, -2, 3, -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16 );

    // 将矩阵上传到GPU
    cv::cuda::GpuMat d_mat;
    d_mat.upload( h_mat );

    // 方法一:同步接口获取 min/max 及其位置
    double minVal, maxVal;
    cv::Point minLoc, maxLoc;
    cv::cuda::minMaxLoc( d_mat, &minVal, &maxVal, &minLoc, &maxLoc );
    std::cout << "Min value: " << minVal << "\n";
    std::cout << "Max value: " << maxVal << "\n";
    std::cout << "Min location: (" << minLoc.x << ", " << minLoc.y << ")\n";
    std::cout << "Max location: (" << maxLoc.x << ", " << maxLoc.y << ")\n";

    // 方法二:异步接口获取 min/max 及其位置
    cv::cuda::GpuMat d_minMaxVals, d_loc;
    cv::cuda::findMinMax( d_mat, d_minMaxVals );            // 得到 [min, max]
    cv::cuda::findMinMaxLoc( d_mat, d_minMaxVals, d_loc );  // 必须传入前一步结果!

    // 下载数值
    cv::Mat host_minMaxVals;
    d_minMaxVals.download( host_minMaxVals );

    if ( host_minMaxVals.type() != CV_32F || host_minMaxVals.total() != 2 )
    {
        std::cerr << "Unexpected type or size for minMaxVals!" << std::endl;
        return -1;
    }

    const float* vals = reinterpret_cast< const float* >( host_minMaxVals.data );
    std::cout << "Downloaded min value: " << vals[ 0 ] << "\n";
    std::cout << "Downloaded max value: " << vals[ 1 ] << "\n";

    // 下载位置
    cv::Mat host_loc;
    d_loc.download( host_loc );

    std::cout << "loc type: " << host_loc.type() << std::endl;
    std::cout << "loc total elements: " << host_loc.total() << std::endl;

    if ( host_loc.type() != CV_32SC1 || host_loc.total() != 2 )
    {
        std::cerr << "Unexpected type or size for loc! Type: " << host_loc.type() << ", Size: " << host_loc.total() << std::endl;
        return -1;
    }

    const int* locData = host_loc.ptr< int >();
    std::cout << "Downloaded min location: (" << locData[ 0 ] << ", " << locData[ 1 ] << ")\n";
    std::cout << "Downloaded max location: (" << locData[ 2 ] << ", " << locData[ 3 ] << ")\n";

    return 0;
}

运行结果

bash 复制代码
Min value: -16
Max value: 15
Min location: (3, 3)
Max location: (2, 3)
Downloaded min value: -16
Downloaded max value: 15
loc type: 4
loc total elements: 2
Downloaded min location: (15, 14)
Downloaded max location: (0, 0)
相关推荐
Java后端的Ai之路31 分钟前
【RAG技术】- RAG系统调优手段之高效召回(通俗易懂附案例)
人工智能·rag·rag系统·召回·rag调优
草莓熊Lotso32 分钟前
Linux 基础 IO 初步解析:从 C 库函数到系统调用,理解文件操作本质
linux·运维·服务器·c语言·数据库·c++·人工智能
Cx330❀37 分钟前
从零实现Shell命令行解释器:原理与实战(附源码)
大数据·linux·数据库·人工智能·科技·elasticsearch·搜索引擎
Niuguangshuo7 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火7 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887827 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
芝士爱知识a7 小时前
2026年AI面试软件推荐
人工智能·面试·职场和发展·大模型·ai教育·考公·智蛙面试
Li emily8 小时前
解决港股实时行情数据 API 接入难题
人工智能·python·fastapi
Aaron15888 小时前
基于RFSOC的数字射频存储技术应用分析
c语言·人工智能·驱动开发·算法·fpga开发·硬件工程·信号处理
J_Xiong01178 小时前
【Agents篇】04:Agent 的推理能力——思维链与自我反思
人工智能·ai agent·推理