OpenCV CUDA模块中逐元素操作------数学函数

  • 操作系统:ubuntu22.04
  • OpenCV版本:OpenCV4.9
  • IDE:Visual Studio Code
  • 编程语言:C++11

算法描述

在OpenCV的CUDA模块中,确实存在一系列用于执行逐元素数学运算的函数,包括指数、对数、平方根等。这些函数对于高级图像处理算法非常有用,比如计算图像梯度幅值时可能用到的平方根操作。

主要函数

1. 指数 - cv::cuda::exp

复制代码
描述:计算每个数组元素的自然指数(e的幂)。
#### 函数原型
cpp 复制代码
 void cv::cuda::exp
 (
        InputArray src, 
        OutputArray dst, 
        Stream& stream = Stream::Null()
    );
参数
  • src: 输入数组。
  • dst: 输出数组。
  • stream: CUDA流用于异步执行(可选)。

2. 对数 - cv::cuda::log

复制代码
描述:计算每个数组元素的自然对数。

函数原型:与cv::cuda::exp类似,但执行的是对数操作。

3. 平方根 - cv::cuda::sqrt

复制代码
描述:计算每个数组元素的平方根。
函数原型

void cv::cuda::sqrt

(

InputArray src,

OutputArray dst,

Stream& stream = Stream::Null()

);

参数
  • src: 输入数组。
  • dst: 输出数组。
  • stream: CUDA流用于异步执行(可选)。

代码示例

cpp 复制代码
#include <iostream>
#include <opencv2/cudaarithm.hpp>
#include <opencv2/opencv.hpp>

int main()
{
    // 创建一个测试图像(单通道浮点型)
    cv::Mat h_image = cv::Mat::ones( 512, 512, CV_32FC1 );
    h_image( cv::Rect( 100, 100, 100, 100 ) ).setTo( cv::Scalar( 0.5 ) );
    h_image( cv::Rect( 300, 300, 100, 100 ) ).setTo( cv::Scalar( 2.0 ) );

    // 上传到GPU
    cv::cuda::GpuMat d_image;
    d_image.upload( h_image );

    // 结果GPU矩阵
    cv::cuda::GpuMat d_exp_result, d_log_result, d_sqrt_result;

    // 指数运算
    cv::cuda::exp( d_image, d_exp_result );

    // 对数运算(加1防止log(0))
    cv::cuda::GpuMat d_temp;
    cv::cuda::add( d_image, cv::Scalar( 1.0 ), d_temp );  // 替代 d_image + 1.0
    cv::cuda::log( d_temp, d_log_result );

    // 平方根
    cv::cuda::sqrt( d_image, d_sqrt_result );

    // sin / cos 需要回到CPU执行
    cv::Mat h_sin_result, h_cos_result;

    // 先下载回CPU
    cv::Mat h_exp_result, h_log_result, h_sqrt_result;
    d_exp_result.download( h_exp_result );
    d_log_result.download( h_log_result );
    d_sqrt_result.download( h_sqrt_result );

    cv::Mat h_data;
    d_image.download( h_data );

    // 显示结果
    cv::imshow( "Original", h_data / 2.0 );
    cv::imshow( "Exp", h_exp_result );
    cv::imshow( "Log", h_log_result );
    cv::imshow( "Sqrt", h_sqrt_result );

    cv::waitKey( 0 );
    return 0;
}

运行结果

相关推荐
带电的小王24 分钟前
【动手学深度学习】3.1. 线性回归
人工智能·深度学习·线性回归
谢尔登29 分钟前
结合 AI 生成 mermaid、plantuml 等图表
人工智能
VR最前沿42 分钟前
【应用】Ghost Dance:利用惯性动捕构建虚拟舞伴
人工智能·科技
说私域1 小时前
内容力重塑品牌增长:开源AI大模型驱动下的智能名片与S2B2C商城赋能抖音生态种草范式
人工智能·小程序·开源·零售
l1t1 小时前
三种读写传统xls格式文件开源库libxls、xlslib、BasicExcel的比较
c++·人工智能·开源·mfc
AI浩1 小时前
【Block总结】EBlock,快速傅里叶变换(FFT)增强输入图像的幅度|即插即用|CVPR2025
人工智能·目标检测·计算机视觉
Vertira1 小时前
Pytorch安装后 如何快速查看经典的网络模型.py文件(例如Alexnet,VGG)(已解决)
人工智能·pytorch·python
Listennnn2 小时前
信号处理基础到进阶再到前沿
人工智能·深度学习·信号处理
奔跑吧邓邓子2 小时前
DeepSeek 赋能智能养老:情感陪伴机器人的温暖革新
人工智能·机器人·deepseek·智能养老·情感陪伴
DX_dove2 小时前
pytorch3d+pytorch1.10+MinkowskiEngine安装
人工智能·pytorch·python