人工智能100问☞第24问:什么是生成对抗网络(GAN)?

目录

一、通俗解释​​

二、专业解析

三、权威参考


生成对抗网络(GAN)是一种由​​生成器​​与​​判别器​​组成的机器学习模型,通过对抗训练生成逼真数据。

一、通俗解释​​

可以把它想象成"造假者"和"鉴定师"的博弈:生成器(造假者)不断伪造假画,判别器(鉴定师)则努力辨别真假。两者反复较量,直到假画逼真到鉴定师也无法分辨,最终生成器就能产出以假乱真的作品。

二、专业解析

GAN是一种基于博弈论中​​极小极大优化​​框架的无监督学习模型,包含两个深度神经网络:

​​生成器(G)​​:输入随机噪声,通过参数映射逼近真实数据分布,生成合成样本;

​​判别器(D)​​:作为二分类器,评估输入样本来自真实数据还是生成器输出的概率。

两者的优化目标为纳什均衡------生成器最小化判别器的判断准确率,而判别器最大化其分类能力。通过交替训练,生成器最终学习到与真实数据高度一致的分布特性

三、权威参考

1 、中国计算机学会

生成对抗网络是一种无监督机器学习方法,包含生成器和判别器两个模型。判别器判定样例是来自数据集还是生成器合成的图像,生成器尽可能使生成图像以假乱真迷惑判别器。两者相互对抗以提升各自能力,直至判别器无法分辨合成图像与真实图像。

2 、JEDEC (联合电子设备工程委员会)

GAN的核心在于生成器与判别器的动态博弈。生成器通过随机噪声输入生成逼真数据,判别器则通过监督学习区分真实与生成样本。这种对抗训练优化了生成数据的分布,使其逼近真实数据分布。

3 、联合国高级别人工智能咨询机构专家 张凌寒

生成对抗网络(GAN)基于递归式生成模型,能够生成逼真的图像、音频和视频等内容,革新了传统内容生产方式,但也带来了深度伪造等潜在风险。

相关推荐
陈天伟教授25 分钟前
人工智能应用-机器听觉:7. 统计合成法
人工智能·语音识别
笨蛋不要掉眼泪1 小时前
Spring Boot集成LangChain4j:与大模型对话的极速入门
java·人工智能·后端·spring·langchain
昨夜见军贴06161 小时前
IACheck AI审核技术赋能消费认证:为智能宠物喂食器TELEC报告构筑智能合规防线
人工智能·宠物
DisonTangor1 小时前
阿里开源语音识别模型——Qwen3-ASR
人工智能·开源·语音识别
万事ONES1 小时前
ONES 签约北京高级别自动驾驶示范区专设国有运营平台——北京车网
人工智能·机器学习·自动驾驶
qyr67891 小时前
深度解析:3D细胞培养透明化试剂供应链与主要制造商分布
大数据·人工智能·3d·市场分析·市场报告·3d细胞培养·细胞培养
软件开发技术深度爱好者1 小时前
浅谈人工智能(AI)对个人发展的影响
人工智能
一路向北he2 小时前
esp32 arduino环境的搭建
人工智能
SmartBrain2 小时前
Qwen3-VL 模型架构及原理详解
人工智能·语言模型·架构·aigc
renhongxia12 小时前
AI算法实战:逻辑回归在风控场景中的应用
人工智能·深度学习·算法·机器学习·信息可视化·语言模型·逻辑回归