目标跟踪相关综述文章

文章 年份 会议/引用量 IF
Object tracking:A survery 2006 7618
Object Tracking Methods:A Review 2019 554
Multiple object tracking: A literature review 2020 1294
Deep learning for multiple object tracking: a survey 2019 145
Deep Learning for Visual Tracking:A Comprehensive Survey 2021 432 23.60
Deep learning in multi-object detection and tracking: state of the art 2021 305
Deep Learning in Video Multi-Object Tracking: A Survey 2020 807 6

others are coming soon...

  1. 定义:
    It aims to infer the location of an arbitrary target in a video sequence, given only its location in the first frame

  2. 应用:
    traffic monitoring, robotics, autonomous vehicle tracking, medical diagnosis systems, activity recognition, and so on.

  • monitoring of traffic flow and detection of traffic accidents
  • ASIMO humanoid robot
  • path-tracking
  • tracking of ventricular wall and medical instruments control
  • learning activity patterns and human activity recognition(比如说VR)
  1. 挑战:
  • Illumination Variation
  • Background Clutters:the backgroundnear the targethas a similarcolor or textureas the target
  • Low Resolution
  • Scale Variation:the ratio ofbounding boxesof the first frameand the currentframe is out ofthe range
  • Occlusion:the target is partially or fully occluded(被遮挡)
  • Change the target position:During themovement, thetarget may berotated,deformed, and soon.
  • Fast Motion:the motion of theground truth islarge
  1. 方法:
    feature-based, segmentation-based, estimation-based, and learning-based methods
  • generative methodsVS discriminative methods
    都需要求 P ( Y ∣ X ) P(Y\mid X) P(Y∣X),即已知样本x,求其属于类别y的概率。不同的是generative methods需根据公式P(Y∣X)= \\frac{P(X∣Y)P(Y)}{P(X)} 来求,但 ' d i s c r i m i n a t i v e m e t h o d s ' 直接求 来求,但\`discriminative methods\`直接求 来求,但'discriminativemethods'直接求P(Y\\mid X)。(Note that deep learning is belong to discriminative methods)
  1. 方法的评价:
  • Robustness
  • Adaptability
  • Real-time processing of information

more details are provided in this paperObject Tracking Methods:A Review

相关推荐
小鸡吃米…39 分钟前
机器学习 - K - 中心聚类
人工智能·机器学习·聚类
好奇龙猫1 小时前
【AI学习-comfyUI学习-第三十节-第三十一节-FLUX-SD放大工作流+FLUX图生图工作流-各个部分学习】
人工智能·学习
沈浩(种子思维作者)1 小时前
真的能精准医疗吗?癌症能提前发现吗?
人工智能·python·网络安全·健康医疗·量子计算
minhuan1 小时前
大模型应用:大模型越大越好?模型参数量与效果的边际效益分析.51
人工智能·大模型参数评估·边际效益分析·大模型参数选择
Cherry的跨界思维2 小时前
28、AI测试环境搭建与全栈工具实战:从本地到云平台的完整指南
java·人工智能·vue3·ai测试·ai全栈·测试全栈·ai测试全栈
MM_MS2 小时前
Halcon变量控制类型、数据类型转换、字符串格式化、元组操作
开发语言·人工智能·深度学习·算法·目标检测·计算机视觉·视觉检测
ASF1231415sd2 小时前
【基于YOLOv10n-CSP-PTB的大豆花朵检测与识别系统详解】
人工智能·yolo·目标跟踪
水如烟2 小时前
孤能子视角:“意识“的阶段性回顾,“感质“假说
人工智能
Carl_奕然3 小时前
【数据挖掘】数据挖掘必会技能之:A/B测试
人工智能·python·数据挖掘·数据分析
旅途中的宽~3 小时前
《European Radiology》:2024血管瘤分割—基于MRI T1序列的分割算法
人工智能·计算机视觉·mri·sci一区top·血管瘤·t1