目标跟踪相关综述文章

文章 年份 会议/引用量 IF
Object tracking:A survery 2006 7618
Object Tracking Methods:A Review 2019 554
Multiple object tracking: A literature review 2020 1294
Deep learning for multiple object tracking: a survey 2019 145
Deep Learning for Visual Tracking:A Comprehensive Survey 2021 432 23.60
Deep learning in multi-object detection and tracking: state of the art 2021 305
Deep Learning in Video Multi-Object Tracking: A Survey 2020 807 6

others are coming soon...

  1. 定义:
    It aims to infer the location of an arbitrary target in a video sequence, given only its location in the first frame

  2. 应用:
    traffic monitoring, robotics, autonomous vehicle tracking, medical diagnosis systems, activity recognition, and so on.

  • monitoring of traffic flow and detection of traffic accidents
  • ASIMO humanoid robot
  • path-tracking
  • tracking of ventricular wall and medical instruments control
  • learning activity patterns and human activity recognition(比如说VR)
  1. 挑战:
  • Illumination Variation
  • Background Clutters:the backgroundnear the targethas a similarcolor or textureas the target
  • Low Resolution
  • Scale Variation:the ratio ofbounding boxesof the first frameand the currentframe is out ofthe range
  • Occlusion:the target is partially or fully occluded(被遮挡)
  • Change the target position:During themovement, thetarget may berotated,deformed, and soon.
  • Fast Motion:the motion of theground truth islarge
  1. 方法:
    feature-based, segmentation-based, estimation-based, and learning-based methods
  • generative methodsVS discriminative methods
    都需要求 P ( Y ∣ X ) P(Y\mid X) P(Y∣X),即已知样本x,求其属于类别y的概率。不同的是generative methods需根据公式P(Y∣X)= \\frac{P(X∣Y)P(Y)}{P(X)} 来求,但 ' d i s c r i m i n a t i v e m e t h o d s ' 直接求 来求,但\`discriminative methods\`直接求 来求,但'discriminativemethods'直接求P(Y\\mid X)。(Note that deep learning is belong to discriminative methods)
  1. 方法的评价:
  • Robustness
  • Adaptability
  • Real-time processing of information

more details are provided in this paperObject Tracking Methods:A Review

相关推荐
红衣小蛇妖7 分钟前
神经网络-Day46
人工智能·深度学习·神经网络
带电的小王31 分钟前
【动手学深度学习】3.1. 线性回归
人工智能·深度学习·线性回归
谢尔登36 分钟前
结合 AI 生成 mermaid、plantuml 等图表
人工智能
VR最前沿1 小时前
【应用】Ghost Dance:利用惯性动捕构建虚拟舞伴
人工智能·科技
说私域1 小时前
内容力重塑品牌增长:开源AI大模型驱动下的智能名片与S2B2C商城赋能抖音生态种草范式
人工智能·小程序·开源·零售
l1t1 小时前
三种读写传统xls格式文件开源库libxls、xlslib、BasicExcel的比较
c++·人工智能·开源·mfc
AI浩1 小时前
【Block总结】EBlock,快速傅里叶变换(FFT)增强输入图像的幅度|即插即用|CVPR2025
人工智能·目标检测·计算机视觉
Vertira1 小时前
Pytorch安装后 如何快速查看经典的网络模型.py文件(例如Alexnet,VGG)(已解决)
人工智能·pytorch·python
Listennnn2 小时前
信号处理基础到进阶再到前沿
人工智能·深度学习·信号处理
奔跑吧邓邓子2 小时前
DeepSeek 赋能智能养老:情感陪伴机器人的温暖革新
人工智能·机器人·deepseek·智能养老·情感陪伴