目标跟踪相关综述文章

文章 年份 会议/引用量 IF
Object tracking:A survery 2006 7618
Object Tracking Methods:A Review 2019 554
Multiple object tracking: A literature review 2020 1294
Deep learning for multiple object tracking: a survey 2019 145
Deep Learning for Visual Tracking:A Comprehensive Survey 2021 432 23.60
Deep learning in multi-object detection and tracking: state of the art 2021 305
Deep Learning in Video Multi-Object Tracking: A Survey 2020 807 6

others are coming soon...

  1. 定义:
    It aims to infer the location of an arbitrary target in a video sequence, given only its location in the first frame

  2. 应用:
    traffic monitoring, robotics, autonomous vehicle tracking, medical diagnosis systems, activity recognition, and so on.

  • monitoring of traffic flow and detection of traffic accidents
  • ASIMO humanoid robot
  • path-tracking
  • tracking of ventricular wall and medical instruments control
  • learning activity patterns and human activity recognition(比如说VR)
  1. 挑战:
  • Illumination Variation
  • Background Clutters:the backgroundnear the targethas a similarcolor or textureas the target
  • Low Resolution
  • Scale Variation:the ratio ofbounding boxesof the first frameand the currentframe is out ofthe range
  • Occlusion:the target is partially or fully occluded(被遮挡)
  • Change the target position:During themovement, thetarget may berotated,deformed, and soon.
  • Fast Motion:the motion of theground truth islarge
  1. 方法:
    feature-based, segmentation-based, estimation-based, and learning-based methods
  • generative methodsVS discriminative methods
    都需要求 P ( Y ∣ X ) P(Y\mid X) P(Y∣X),即已知样本x,求其属于类别y的概率。不同的是generative methods需根据公式P(Y∣X)= \\frac{P(X∣Y)P(Y)}{P(X)} 来求,但 ' d i s c r i m i n a t i v e m e t h o d s ' 直接求 来求,但\`discriminative methods\`直接求 来求,但'discriminativemethods'直接求P(Y\\mid X)。(Note that deep learning is belong to discriminative methods)
  1. 方法的评价:
  • Robustness
  • Adaptability
  • Real-time processing of information

more details are provided in this paperObject Tracking Methods:A Review

相关推荐
cdming13 小时前
微软Win11双AI功能来袭:“AI管家”+聊天机器人重构桌面交互体验
人工智能·microsoft·机器人
罗西的思考13 小时前
[Agent] ACE(Agentic Context Engineering)和Dynamic Cheatsheet学习笔记
人工智能·机器学习
fantasy_arch14 小时前
transformer-注意力评分函数
人工智能·深度学习·transformer
逐云者12314 小时前
自动驾驶强化学习的价值对齐:奖励函数设计的艺术与科学
人工智能·机器学习·自动驾驶·自动驾驶奖励函数·奖励函数黑客防范·智能驾驶价值对齐
BreezeJuvenile14 小时前
深度学习实验一之图像特征提取和深度学习训练数据标注
人工智能·深度学习
Dev7z14 小时前
舌苔舌象分类图像数据集
人工智能·分类·数据挖掘
万俟淋曦14 小时前
【论文速递】2025年第30周(Jul-20-26)(Robotics/Embodied AI/LLM)
人工智能·深度学习·ai·机器人·论文·robotics·具身智能
高洁0114 小时前
大模型-高效优化技术全景解析:微调 量化 剪枝 梯度裁剪与蒸馏 下
人工智能·python·深度学习·神经网络·知识图谱
CoookeCola14 小时前
MovieNet(A holistic dataset for movie understanding) :面向电影理解的多模态综合数据集与工具链
数据仓库·人工智能·目标检测·计算机视觉·数据挖掘
张艾拉 Fun AI Everyday14 小时前
Gartner 2025年新兴技术成熟度曲线
人工智能