目标跟踪相关综述文章

文章 年份 会议/引用量 IF
Object tracking:A survery 2006 7618
Object Tracking Methods:A Review 2019 554
Multiple object tracking: A literature review 2020 1294
Deep learning for multiple object tracking: a survey 2019 145
Deep Learning for Visual Tracking:A Comprehensive Survey 2021 432 23.60
Deep learning in multi-object detection and tracking: state of the art 2021 305
Deep Learning in Video Multi-Object Tracking: A Survey 2020 807 6

others are coming soon...

  1. 定义:
    It aims to infer the location of an arbitrary target in a video sequence, given only its location in the first frame

  2. 应用:
    traffic monitoring, robotics, autonomous vehicle tracking, medical diagnosis systems, activity recognition, and so on.

  • monitoring of traffic flow and detection of traffic accidents
  • ASIMO humanoid robot
  • path-tracking
  • tracking of ventricular wall and medical instruments control
  • learning activity patterns and human activity recognition(比如说VR)
  1. 挑战:
  • Illumination Variation
  • Background Clutters:the backgroundnear the targethas a similarcolor or textureas the target
  • Low Resolution
  • Scale Variation:the ratio ofbounding boxesof the first frameand the currentframe is out ofthe range
  • Occlusion:the target is partially or fully occluded(被遮挡)
  • Change the target position:During themovement, thetarget may berotated,deformed, and soon.
  • Fast Motion:the motion of theground truth islarge
  1. 方法:
    feature-based, segmentation-based, estimation-based, and learning-based methods
  • generative methodsVS discriminative methods
    都需要求 P ( Y ∣ X ) P(Y\mid X) P(Y∣X),即已知样本x,求其属于类别y的概率。不同的是generative methods需根据公式P(Y∣X)= \\frac{P(X∣Y)P(Y)}{P(X)} 来求,但 ' d i s c r i m i n a t i v e m e t h o d s ' 直接求 来求,但\`discriminative methods\`直接求 来求,但'discriminativemethods'直接求P(Y\\mid X)。(Note that deep learning is belong to discriminative methods)
  1. 方法的评价:
  • Robustness
  • Adaptability
  • Real-time processing of information

more details are provided in this paperObject Tracking Methods:A Review

相关推荐
狂炫冰美式1 天前
3天,1人,从0到付费产品:AI时代个人开发者的生存指南
前端·人工智能·后端
LCG元1 天前
垂直Agent才是未来:详解让大模型"专业对口"的三大核心技术
人工智能
我不是QI1 天前
周志华《机器学习—西瓜书》二
人工智能·安全·机器学习
操练起来1 天前
【昇腾CANN训练营·第八期】Ascend C生态兼容:基于PyTorch Adapter的自定义算子注册与自动微分实现
人工智能·pytorch·acl·昇腾·cann
KG_LLM图谱增强大模型1 天前
[500页电子书]构建自主AI Agent系统的蓝图:谷歌重磅发布智能体设计模式指南
人工智能·大模型·知识图谱·智能体·知识图谱增强大模型·agenticai
声网1 天前
活动推荐丨「实时互动 × 对话式 AI」主题有奖征文
大数据·人工智能·实时互动
caiyueloveclamp1 天前
【功能介绍03】ChatPPT好不好用?如何用?用户操作手册来啦!——【AI溯源篇】
人工智能·信息可视化·powerpoint·ai生成ppt·aippt
q***48411 天前
Vanna AI:告别代码,用自然语言轻松查询数据库,领先的RAG2SQL技术让结果更智能、更精准!
人工智能·microsoft
LCG元1 天前
告别空谈!手把手教你用LangChain构建"能干活"的垂直领域AI Agent
人工智能
想你依然心痛1 天前
视界无界:基于Rokid眼镜的AI商务同传系统开发与实践
人工智能·智能硬件·rokid·ai眼镜·ar技术