Flink 的任务槽和槽共享

在 Apache Flink 中,任务槽(Task Slot)槽共享组(Slot Sharing Group) 是资源管理和任务调度的关键机制。它们决定了 Flink 如何在集群中分配资源并执行任务。


一、任务槽(Task Slot)

1. 定义

  • Task Slot 是 TaskManager 提供的资源单位,代表一个独立的线程或资源隔离单元。
  • 每个 Slot 可以运行多个 SubTask(来自不同 JobVertex),但这些 SubTask 必须属于同一个 Job,并且可以共享 Slot。

2. 配置方式

yaml 复制代码
# flink-conf.yaml
taskmanager.numberOfTaskSlots: 4
  • 一个 TaskManager 可以配置多个 Slot(例如 4 个)。
  • 每个 Slot 默认拥有相同的内存资源(可通过 taskmanager.memory.task.heap.size 等参数精细控制)。

3. Slot 的作用

作用 描述
资源隔离 Slot 是资源分配的基本单位,限制并发任务数。
并行度支持 一个 Job 的并行度不能超过 Slot 总数。
资源利用率 合理设置 Slot 数量可提升资源利用率和吞吐量。

二、槽共享(Slot Sharing)

1. 定义

  • 槽共享(Slot Sharing) 是指多个 Operator 或 SubTask 可以运行在同一个 Slot 中。
  • 这是 Flink 优化资源利用的重要机制,避免为每个 Operator 单独分配 Slot。

2. Slot Sharing Group

  • 通过 slotSharingGroup() 方法将一组 Operator 分配到同一个槽共享组。
  • 同一个组内的 Operator 可以共享 Slot,即可以在同一个 Slot 中执行。
示例代码:
java 复制代码
stream.map(new MyMapper()).name("Mapper").slotSharingGroup("group1");
stream.keyBy(...).process(new MyProcessFunction()).name("Processor").slotSharingGroup("group1");
  • 上述两个 Operator 属于同一个 Slot Sharing Group,Flink 将尝试将它们部署在同一个 Slot 中。

三、Slot 共享的条件

条件 描述
同一个 Job 只有同一个 Job 的 Operators 才能共享 Slot。
相同 Slot Sharing Group Operator 必须属于同一个 Slot Sharing Group。
不需要网络传输 如果两个 Operator 之间是一对一连接(如 map → map),可以共享 Slot。
Keyed Stream Keyed Operators 可以共享 Slot,前提是它们的 key 分布一致。

四、Slot 分配策略

1. Slot 分配流程

  • Flink Scheduler 根据 JobGraph 构建 ExecutionGraph。
  • 根据 Slot Sharing Group 和并行度,将 SubTasks 分配到各个 Slot。
  • 每个 Slot 包含多个连续的 Operators(SubTasks),形成 Operator Chain。

2. Slot 分配示意图

假设一个 Job 包含如下结构:

复制代码
Source → Map → Filter → Sink

如果所有 Operators 都允许共享 Slot,则整个链可能被分配到一个 Slot 中。


五、资源分配与并行度关系

TaskManager 数量 Slot 数量/TaskManager 最大并行度
2 4 8
3 2 6
1 8 8

注意:Job 的并行度不能超过 Slot 总数。


六、高级配置与优化建议

配置项 描述
default_slot_sharing_group 默认 Slot Sharing Group 名称
slot.model.type 设置为 SHAREDDEDICATED 控制是否启用共享
execution.checkpointing.min-pause-between-checkpoints 避免 Checkpoint 对 Slot 使用造成影响
taskmanager.memory.managed.fraction 控制 Slot 内存使用比例

七、总结对比表

概念 描述 是否默认启用
Task Slot TaskManager 的资源单位 ✅ 默认启用
Slot Sharing 多个 Operator 共享一个 Slot ✅ 默认启用
Slot Sharing Group 自定义分组控制共享范围 ❌ 默认不设置
DEDICATED Slot 强制 Operator 独占 Slot ✅ 支持
相关推荐
B站计算机毕业设计超人5 分钟前
计算机毕业设计hadoop+spark+hive在线教育可视化 课程推荐系统 大数据毕业设计(源码+LW文档+PPT+讲解)
大数据·人工智能·hive·hadoop·scrapy·spark·课程设计
B站计算机毕业设计超人6 分钟前
计算机毕业设计PySpark+Hive+Django小红书评论情感分析 小红书笔记可视化 小红书舆情分析预测系统 大数据毕业设计(源码+LW+PPT+讲解)
大数据·人工智能·hive·爬虫·python·spark·课程设计
Lethehong15 分钟前
探索高效工作流的秘密:GLM-4.7 与 Dify 平台深度集成实践
大数据·人工智能·算法
大鳥18 分钟前
第一章 - 数据仓库是什么
大数据·数据库·hive
愤怒的苹果ext2 小时前
flink-sql-connector-elasticsearch8兼容Flink SQL同步到Elasticsearch8.18.8
sql·flink·es8
TM1Club10 小时前
AI驱动的预测:新的竞争优势
大数据·人工智能·经验分享·金融·数据分析·自动化
zhang1338308907510 小时前
CG-09H 超声波风速风向传感器 加热型 ABS材质 重量轻 没有机械部件
大数据·运维·网络·人工智能·自动化
电商API_1800790524711 小时前
第三方淘宝商品详情 API 全维度调用指南:从技术对接到生产落地
java·大数据·前端·数据库·人工智能·网络爬虫
龙山云仓12 小时前
No140:AI世间故事-对话康德——先验哲学与AI理性:范畴、道德律与自主性
大数据·人工智能·深度学习·机器学习·全文检索·lucene
躺柒13 小时前
读数字时代的网络风险管理:策略、计划与执行04风险指引体系
大数据·网络·信息安全·数字化·网络管理·网络风险管理