【自然语言处理与大模型】Windows安装RAGFlow并接入本地Ollama模型

本文给大家带来一个实用的RAG框架------RAGFlow。我们来看看它的自我介绍吧!

还是老规矩,它是什么?有什么用?这些官方文档都可以简单的查到(官方中文README_zh.md)。下面我带大家一步步安装并实现一个知识库问答吧!

(1)快速安装

1、拉取官方github上的ragflow仓库

bash 复制代码
git clone https://github.com/infiniflow/ragflow.git

2、进入ragflow下面的docker目录,执行docker compose命令进行本地安装

bash 复制代码
# 进入docker目录中
cd ragflow/docker

# 我们安装GPU版本的
docker compose -f docker-compose-gpu.yml up -d

3、网页输入localhost进入ragflow的使用界面

(2)设置默认模型

4、点击头像进入设置,在模型供应商里面配置大模型

5、 因为要使用本地部署的模型,所以选择Ollama是最简单的

6、embedding模型也可以选择qwen3:4b

【坑】这里添加失败了,原因是Ollama的服务默认不是所有地址都能访问的,所以我们要去设置一个HOST环境,让宿主机的IP也能访问Ollama的API。

7、先配置一下Docker的.env文件

8、在.env文件里面添加环境变量,这样Docker里面的ragflow就可以正确访问Ollama的API

bash 复制代码
# 配置Ollama服务的宿主机IP
OLLAMA_API_BASE_URL=http://10.170.151.170:11434

# 兼容OpenAI的API
CUSTOM_OPENAI_API_BASE_URL=http://10.170.151.170:8000

9、再去我自己的电脑(宿主机)去配置系统环境变量,允许ollama服务被所有地址访问

【坑】 配置好HOST之后一定要重启Ollama,不然不会生效

10、我们继续配置Ollama模型

11、默认已经安装了通义千问的向量模型,给它填入API KEY

【注】现在去阿里云百炼注册账号,可以获得每个模型免费100万的额度!!!跳转链接:阿里云百炼https://bailian.console.aliyun.com/

(3)创建知识库

12、点击上方的知识库去创建一个

13、添加文件成功之后,进行文本转向量处理

14、进行一些必要的配置(这些配置参数自行去官方doc里面查)

RAGFlow官方文档https://ragflow.io/docs/dev/

(4)创建基于RAG的聊天

15、点击上方的聊天,新建一个助理

16、测试RAG对话

相关推荐
Mr数据杨4 小时前
【Dv3Admin】插件 dv3admin_chatgpt 集成大语言模型智能模块
人工智能·语言模型·chatgpt
zm-v-159304339864 小时前
AI 赋能 Copula 建模:大语言模型驱动的相关性分析革新
人工智能·语言模型·自然语言处理
zhz52145 小时前
AI数字人融合VR全景:从技术突破到可信场景落地
人工智能·vr·ai编程·ai数字人·ai agent·智能体
数据与人工智能律师5 小时前
虚拟主播肖像权保护,数字时代的法律博弈
大数据·网络·人工智能·算法·区块链
武科大许志伟6 小时前
武汉科技大学人工智能与演化计算实验室许志伟课题组参加2025中国膜计算论坛
人工智能·科技
哲讯智能科技6 小时前
【无标题】威灏光电&哲讯科技MES项目启动会圆满举行
人工智能
__Benco6 小时前
OpenHarmony平台驱动开发(十七),UART
人工智能·驱动开发·harmonyos
开放知识图谱6 小时前
论文浅尝 | HOLMES:面向大语言模型多跳问答的超关系知识图谱方法(ACL2024)
人工智能·语言模型·自然语言处理·知识图谱
weixin_444579306 小时前
基于Llama3的开发应用(二):大语言模型的工业部署
人工智能·语言模型·自然语言处理