【自然语言处理与大模型】Windows安装RAGFlow并接入本地Ollama模型

本文给大家带来一个实用的RAG框架------RAGFlow。我们来看看它的自我介绍吧!

还是老规矩,它是什么?有什么用?这些官方文档都可以简单的查到(官方中文README_zh.md)。下面我带大家一步步安装并实现一个知识库问答吧!

(1)快速安装

1、拉取官方github上的ragflow仓库

bash 复制代码
git clone https://github.com/infiniflow/ragflow.git

2、进入ragflow下面的docker目录,执行docker compose命令进行本地安装

bash 复制代码
# 进入docker目录中
cd ragflow/docker

# 我们安装GPU版本的
docker compose -f docker-compose-gpu.yml up -d

3、网页输入localhost进入ragflow的使用界面

(2)设置默认模型

4、点击头像进入设置,在模型供应商里面配置大模型

5、 因为要使用本地部署的模型,所以选择Ollama是最简单的

6、embedding模型也可以选择qwen3:4b

【坑】这里添加失败了,原因是Ollama的服务默认不是所有地址都能访问的,所以我们要去设置一个HOST环境,让宿主机的IP也能访问Ollama的API。

7、先配置一下Docker的.env文件

8、在.env文件里面添加环境变量,这样Docker里面的ragflow就可以正确访问Ollama的API

bash 复制代码
# 配置Ollama服务的宿主机IP
OLLAMA_API_BASE_URL=http://10.170.151.170:11434

# 兼容OpenAI的API
CUSTOM_OPENAI_API_BASE_URL=http://10.170.151.170:8000

9、再去我自己的电脑(宿主机)去配置系统环境变量,允许ollama服务被所有地址访问

【坑】 配置好HOST之后一定要重启Ollama,不然不会生效

10、我们继续配置Ollama模型

11、默认已经安装了通义千问的向量模型,给它填入API KEY

【注】现在去阿里云百炼注册账号,可以获得每个模型免费100万的额度!!!跳转链接:阿里云百炼https://bailian.console.aliyun.com/

(3)创建知识库

12、点击上方的知识库去创建一个

13、添加文件成功之后,进行文本转向量处理

14、进行一些必要的配置(这些配置参数自行去官方doc里面查)

RAGFlow官方文档https://ragflow.io/docs/dev/

(4)创建基于RAG的聊天

15、点击上方的聊天,新建一个助理

16、测试RAG对话

相关推荐
新缸中之脑13 分钟前
编码代理的未来
人工智能
Anarkh_Lee21 分钟前
【小白也能实现智能问数智能体】使用开源的universal-db-mcp在coze中实现问数 AskDB智能体
数据库·人工智能·ai·开源·ai编程
John_ToDebug32 分钟前
2026年展望:在技术涌现时代构筑确定性
人工智能·程序人生
AndyHeee42 分钟前
【windows使用TensorFlow,GPU无法识别问题汇总,含TensorFlow完整安装过程】
人工智能·windows·tensorflow
jay神1 小时前
基于YOLOv8的木材表面缺陷检测系统
人工智能·深度学习·yolo·计算机视觉·毕业设计
交通上的硅基思维1 小时前
人工智能安全:风险、机制与治理框架研究
人工智能·安全·百度
老百姓懂点AI1 小时前
[测试工程] 告别“玄学”评测:智能体来了(西南总部)基于AI agent指挥官的自动化Eval框架与AI调度官的回归测试
运维·人工智能·自动化
2501_948120151 小时前
基于量化感知训练的大语言模型压缩方法
人工智能·语言模型·自然语言处理
songyuc1 小时前
【Llava】load_pretrained_model() 说明
人工智能·深度学习
MARS_AI_1 小时前
大模型赋能客户沟通,云蝠大模型呼叫实现问题解决全链路闭环
人工智能·自然语言处理·信息与通信·agi