【自然语言处理与大模型】Windows安装RAGFlow并接入本地Ollama模型

本文给大家带来一个实用的RAG框架------RAGFlow。我们来看看它的自我介绍吧!

还是老规矩,它是什么?有什么用?这些官方文档都可以简单的查到(官方中文README_zh.md)。下面我带大家一步步安装并实现一个知识库问答吧!

(1)快速安装

1、拉取官方github上的ragflow仓库

bash 复制代码
git clone https://github.com/infiniflow/ragflow.git

2、进入ragflow下面的docker目录,执行docker compose命令进行本地安装

bash 复制代码
# 进入docker目录中
cd ragflow/docker

# 我们安装GPU版本的
docker compose -f docker-compose-gpu.yml up -d

3、网页输入localhost进入ragflow的使用界面

(2)设置默认模型

4、点击头像进入设置,在模型供应商里面配置大模型

5、 因为要使用本地部署的模型,所以选择Ollama是最简单的

6、embedding模型也可以选择qwen3:4b

【坑】这里添加失败了,原因是Ollama的服务默认不是所有地址都能访问的,所以我们要去设置一个HOST环境,让宿主机的IP也能访问Ollama的API。

7、先配置一下Docker的.env文件

8、在.env文件里面添加环境变量,这样Docker里面的ragflow就可以正确访问Ollama的API

bash 复制代码
# 配置Ollama服务的宿主机IP
OLLAMA_API_BASE_URL=http://10.170.151.170:11434

# 兼容OpenAI的API
CUSTOM_OPENAI_API_BASE_URL=http://10.170.151.170:8000

9、再去我自己的电脑(宿主机)去配置系统环境变量,允许ollama服务被所有地址访问

【坑】 配置好HOST之后一定要重启Ollama,不然不会生效

10、我们继续配置Ollama模型

11、默认已经安装了通义千问的向量模型,给它填入API KEY

【注】现在去阿里云百炼注册账号,可以获得每个模型免费100万的额度!!!跳转链接:阿里云百炼https://bailian.console.aliyun.com/

(3)创建知识库

12、点击上方的知识库去创建一个

13、添加文件成功之后,进行文本转向量处理

14、进行一些必要的配置(这些配置参数自行去官方doc里面查)

RAGFlow官方文档https://ragflow.io/docs/dev/

(4)创建基于RAG的聊天

15、点击上方的聊天,新建一个助理

16、测试RAG对话

相关推荐
阿里云大数据AI技术16 分钟前
【NeurIPS2025】阿里云PAI团队动态数据调度方案Skrull 入选
人工智能
硬汉嵌入式17 分钟前
VisualGDB 6.1 Beta5版本,正式引入全新的高速AI编辑引擎,专为C/C++项目量身打造
人工智能·visualgdb
乾元29 分钟前
AI 驱动的入侵检测与异常会话判别:从规则到行为分析前言:从“捕获敌人”到“守卫秩序”
运维·网络·人工智能·网络协议·安全
泰迪智能科技011 小时前
分享|深化产教融合丨图书联合编写招募直播
人工智能
沐雪架构师1 小时前
OpenAgents:让AI智能体Agent像人类一样联网协作
人工智能
我要充满正能量1 小时前
拥抱AI Coding,让我更自信能胜任我的工作
人工智能·ai编程·claude
安达发公司1 小时前
安达发|效率革命:APS自动排程,为“金属丛林”安装精准导航
大数据·运维·人工智能·aps高级排程·aps排程软件·安达发aps·aps自动排程
神州问学1 小时前
AI 智能体攻陷软件工程:从 SWE-Agent 到 SWE-Swiss,全景解析 AI4SE 最新战局
人工智能
森诺Alyson1 小时前
前沿技术借鉴研讨-2025.12.23(荟萃分析/信号提取/轻量级模型)
论文阅读·人工智能·经验分享·论文笔记·论文讨论
jimmyleeee1 小时前
人工智能基础知识笔记二十八:几款有用的LLM管理工具
人工智能·笔记·python