碎片笔记|PromptStealer复现要点(附Docker简单实用教程)

前言:本篇博客记录PromptStealer复现历程,主要分享环境配置过程中的一些经验。

论文信息:Prompt Stealing Attacks Against Text-to-Image Generation Models. USENIX, 2024.

开源代码:https://github.com/verazuo/prompt-stealing-attack


由于源码中指定了代码运行的环境为cuda toolkit 11.7, python 3.8, pytorch 1.12.0a0+8a1a93a,在多次尝试pytorch其他版本报错未果后,决定按照上述指定的环境配置来操作。


环境配置

1 Docker安装

可以根据此博客中的教程安装docker。

⚠️注意:不要在conda容器中嵌套安装docker,否则可能会报错。

(我使用的账号下已经安装好了docker,通过docker -v命令查看docker版本)

2 镜像拉取

拉取源码中给出的特定版本镜像,生成容器

执行如下命令:

python 复制代码
docker run --gpus all -it --rm -v /newdata/test:/newdata nvcr.io/nvidia/pytorch:22.05-py3
'''
上述命令各部分的含义为:

 - docker run 运行一个新的Docker容器。
 -  --gpus all 启用所有主机上的可用GPU资源(需要NVIDIA驱动和nvidia-docker支持)。
 - -it 以交互模式运行容器,并分配一个伪终端(通常用于进入bash或python交互环境)。
 - --rm 容器退出后自动删除该容器(不保留容器历史)。
 -  -v /newdata/test:/newdata 挂载主机目录/newdata/test到容器内的/newdata。这样容器可以访问主机上的数据。
 - nvcr.io/nvidia/pytorch:22.05-py3 使用NVIDIA官方NGC(NVIDIA GPU Cloud)PyTorch容器镜像,版本为22.05,基于Python 3。
'''

镜像拉取成功后,该容器下就会包含pytorch 1.12.0a0+8a1a93a特定版本。可在终端使用docker ps命令查看生成的容器。

3 其余库安装

在docker配置的容器下,切换到源码所在目录,运行pip install -r requirements.txt安装代码运行其余所需的库。

requirements.txt的精简版本如下:

python 复制代码
inplace-abn
fairscale==0.4.4
imagehash
scikit-image
jsons
ftfy
clip==0.2.0
openai-clip==1.0.1
timm==0.4.12
transformers==4.15.0
pycocoevalcap
opencv-python-headless<4.3
opencv-contrib-python-headless<4.3
ruamel.yaml==0.17.32
datasets
pillow==10.4.0

如果clip在使用过程中报错,就通过clip源码的方式安装,下载https://github.com/openai/CLIP后在该目录下运行pip install -e .安装clip库。

这样一来,我们就得到了一个满足代码运行要求的环境。

PS:为避免docker环境的重复配置,可以结合tmux使用,将上述docker环境在tmux窗口下配置,一劳永逸。tmux常用命令:

python 复制代码
tmux new-window -n demo  # 新建窗口
tmux ls # 列举当前全部窗口
tmux attach -t demo  # 打开特定窗口
tmux kill-session -t demo  # 结束指定窗口

数据集下载

由于代码运行过程中会用到论文中自建的lexica_dataset库,为避免在代码运行过程中因网络原因数据集下载失败导致报错,可以使用huggingface镜像预先下载数据集,在终端依次执行如下命令:

  1. 安装huggingface_hub库:pip install -U huggingface_hub
  2. 添加镜像:export HF_ENDPOINT=https://hf-mirror.com
  3. 将数据集下载到指定目录下:huggingface-cli download --repo-type dataset --resume-download vera365/lexica_dataset --local-dir download_dir(替换成安装目录)

加载上述数据集时,使用如下命令,其中cache_dir即为数据集的下载目录download_dir

python 复制代码
from datasets import load_dataset
data = load_dataset("vera365/lexica_dataset", split='test', cache_dir=download_dir)

后记:第一次接触并使用docker,全新的体验,感谢实验室同门的帮助!♥️路虽远,行之将至♥️


相关链接

https://hf-mirror.com/

相关推荐
赵文宇(温玉)4 小时前
免费|不限速|不限流量|多架构|容器镜像服务---第1批同步:Docker官方维护的143个library镜像仓库
docker·容器·架构
工具罗某人5 小时前
docker快速部署redis
redis·docker·容器
杨浦老苏6 小时前
轻量级自托管仪表盘Dashlet
docker·群晖·导航
工具罗某人7 小时前
docker快速部署minio
java·nginx·docker
三不原则7 小时前
实战:Docker+K8s 部署 MNIST 模型,实现 API 调用功能
docker·容器·kubernetes
zhanjixun8 小时前
Spring Boot Maven项目构建Docker镜像
spring boot·docker·maven
java_logo11 小时前
Docker 部署 PostgreSQL 数据库教程
数据库·docker·postgresql·postgresql部署·postgresql部署文档·postgresql部署方案·postgresql部署教程
CodeCaptain13 小时前
通过huggingface的hf download下载的Qwen模型,如何使用用Docker 启动 vLLM 服务
docker·ai·vllm
田野里的雨13 小时前
onlyoffice9.2.1 docker容器中突破20限制
运维·docker·容器
人工智能训练13 小时前
冬日“冻”机无解?联想ThinkPad低温保护无法开机,双电池+BIOS放电终极攻略
java·服务器·ubuntu·docker·电脑·开机·电脑维修