Spark,连接MySQL数据库,添加数据,读取数据

以下是使用 Spark/SparkSQL 连接 MySQL 数据库、添加数据和读取数据的完整示例(需提前准备 MySQL 驱动包):

一、环境准备

  1. 下载 MySQL 驱动
  • 下载 mysql-connector-java-8.0.33.jar (或对应版本),放入 Spark 的 jars 目录,或提交任务时用 --jars 指定路径。
  1. 启动 SparkSession

scala

import org.apache.spark.sql.SparkSession

val spark = SparkSession.builder()

.appName("Spark MySQL Demo")

.master("local[*]") // 本地模式,集群环境需调整

.getOrCreate()

二、连接 MySQL 并读取数据

方式 1:使用 spark.read.jdbc 读取

scala

// 配置连接参数

val jdbcUrl = "jdbc:mysql://localhost:3306/test_db"

val tableName = "users"

val connectionProperties = new java.util.Properties()

connectionProperties.put("user", "root")

connectionProperties.put("password", "your_password")

connectionProperties.put("driver", "com.mysql.cj.jdbc.Driver")

// 读取表数据

val df = spark.read.jdbc(jdbcUrl, tableName, connectionProperties)

// 显示数据

df.show()

方式 2:使用 SparkSQL 执行查询

scala

// 直接执行 SQL 查询(需指定完整表名)

val queryDF = spark.read.jdbc(

jdbcUrl,

s"(SELECT id, name FROM $tableName WHERE age > 18) AS temp", // 子查询防注入

connectionProperties

)

queryDF.show()

三、向 MySQL 插入数据

场景 1:写入新表(自动创建)

scala

// 创建示例数据

val data = Seq(

(3, "Alice", 25, java.sql.Timestamp.valueOf("2023-01-01 00:00:00")),

(4, "Bob", 30, java.sql.Timestamp.valueOf("2023-02-02 00:00:00"))

)

val schema = StructType(

Seq(

StructField("id", IntegerType, false),

StructField("name", StringType, true),

StructField("age", IntegerType, true),

StructField("create_time", TimestampType, true)

)

)

val insertDF = spark.createDataFrame(data, schema)

// 写入 MySQL(若表不存在则自动创建,需确保库存在)

insertDF.write.format("jdbc")

.option("url", jdbcUrl)

.option("dbtable", "users") // 表名

.option("user", "root")

.option("password", "your_password")

.option("driver", "com.mysql.cj.jdbc.Driver")

.mode("append") // 追加模式(可选:overwrite/ignore/replace)

.save()

场景 2:向现有表追加数据

scala

// 读取现有数据并新增记录

val existingDF = spark.read.jdbc(jdbcUrl, tableName, connectionProperties)

val newData = Seq((5, "Charlie", 35, java.sql.Timestamp.valueOf("2023-03-03 00:00:00")))

val newDF = spark.createDataFrame(newData, schema)

// 合并后写入(追加模式)

val combinedDF = existingDF.union(newDF)

combinedDF.write.jdbc(

jdbcUrl,

tableName,

connectionProperties,

"append" // 模式可通过第四个参数指定

)

四、关键参数说明

mode:

写入模式: append (追加)、 overwrite (覆盖)、 ignore (忽略冲突)

dbtable :

目标表名(支持库名.表名格式,如 test_db.users )

partitionColumn :

分区列(大数据量时用于并行读取,需配合 lowerBound / upperBound )

fetchSize :

每次从数据库拉取的行数(优化性能,默认 1000)

createTableOptions :

建表时的额外参数(如 ENGINE=InnoDB CHARSET=utf8 )

五、注意事项

  1. 驱动版本匹配
  • MySQL 8.0+ 需使用 mysql-connector-java-8.0+ ,低版本数据库用 5.1.x 驱动。
  1. 权限问题
  • 确保 MySQL 用户有 INSERT / SELECT 权限:

sql

GRANT INSERT, SELECT ON test_db.* TO 'user'@'localhost';

  1. 大数据量优化
  • 并行写入:通过 numPartitions 和 partitionColumn 分区(需指定主键或索引列)。

  • 批量提交:设置 batchSize=1000 减少连接开销:

scala

.option("batchSize", "1000")

  1. 类型映射
  • Spark 与 MySQL 类型需匹配(如 StringType → VARCHAR , TimestampType → DATETIME )。

六、完整示例(Scala 版)

scala

import org.apache.spark.sql.{SparkSession, Row}

import org.apache.spark.sql.types.{StructType, StructField, IntegerType, StringType, TimestampType}

import java.sql.Timestamp

// 1. 初始化 SparkSession

val spark = SparkSession.builder()

.appName("MySQL Demo")

.master("local[*]")

.getOrCreate()

// 2. 定义连接参数

val jdbcUrl = "jdbc:mysql://localhost:3306/test_db"

val tableName = "users"

val props = new java.util.Properties()

props.setProperty("user", "root")

props.setProperty("password", "your_password")

props.setProperty("driver", "com.mysql.cj.jdbc.Driver")

// 3. 读取数据

val df = spark.read.jdbc(jdbcUrl, tableName, props)

println("读取的数据:")

df.show()

// 4. 准备插入数据

val newData = Seq(

Row(6, "David", 28, new Timestamp(System.currentTimeMillis()))

)

val schema = new StructType(

Array(

StructField("id", IntegerType, nullable = false),

StructField("name", StringType, nullable = true),

StructField("age", IntegerType, nullable = true),

StructField("create_time", TimestampType, nullable = true)

)

)

val insertDF = spark.createDataFrame(spark.sparkContext.parallelize(newData), schema)

// 5. 插入数据(追加模式)

insertDF.write.jdbc(jdbcUrl, tableName, "append", props)

println("数据插入完成!")

// 6. 验证插入结果

val updatedDF = spark.read.jdbc(jdbcUrl, tableName, props)

updatedDF.show()

// 7. 停止 SparkSession

spark.stop()

执行后可通过 MySQL 客户端验证数据是否正确写入。

相关推荐
拓端研究室43 分钟前
专题:2025全球消费趋势与中国市场洞察报告|附300+份报告PDF、原数据表汇总下载
大数据·信息可视化·pdf
青云交1 小时前
Java 大视界 -- Java 大数据分布式计算在基因测序数据分析与精准医疗中的应用(400)
java·hadoop·spark·分布式计算·基因测序·java 大数据·精准医疗
阿里云大数据AI技术2 小时前
MaxCompute聚簇优化推荐功能发布,单日节省2PB Shuffle、7000+CU!
大数据
Lx3526 小时前
Hadoop小文件处理难题:合并与优化的最佳实践
大数据·hadoop
激昂网络6 小时前
android kernel代码 common-android13-5.15 下载 编译
android·大数据·elasticsearch
绝缘体17 小时前
折扣大牌点餐api接口对接适合本地生活吗?
大数据·网络·搜索引擎·pygame
君不见,青丝成雪7 小时前
浅看架构理论(二)
大数据·架构
武子康7 小时前
大数据-74 Kafka 核心机制揭秘:副本同步、控制器选举与可靠性保障
大数据·后端·kafka
IT毕设梦工厂10 小时前
大数据毕业设计选题推荐-基于大数据的1688商品类目关系分析与可视化系统-Hadoop-Spark-数据可视化-BigData
大数据·毕业设计·源码·数据可视化·bigdata·选题推荐