Doris高性能读能力与实时性实现原理

一、读性能优异的核心原因

‌ MPP 分布式架构‌:采用大规模并行处理架构,将查询请求拆解为多个子任务并行执行,BE 节点之间通过数据分片并行计算‌实现负载均衡,线性扩展处理能力。

单查询可同时利用多节点 CPU 资源,10PB级数据亚秒级响应(P95 响应时间 <1 秒)。

‌向量化执行引擎‌

基于 SIMD 指令集的向量化处理,单次运算处理1024行数据块‌,相比传统行式引擎效率提升 5-10 倍。

通过减少虚函数调用、提升 CPU 缓存命中率等优化,降低复杂查询的计算开销。

‌ 列存储与智能压缩‌:数据按列存储配合 ‌ZSTD/LZ4 压缩算法‌,相同数据量下 I/O 吞吐量比行存降低 60%-90%。

通过 ‌前缀索引+稀疏索引‌ 组合,快速定位目标数据块,减少磁盘扫描范围。

‌ 数据局部性优化‌:分布式存储层 BE 节点同时承担计算任务,消除传统架构中存储与计算分离的跨网络数据传输开销‌。

分区分桶策略保障相同分片数据集中存储,降低 Join 操作的数据 Shuffle 成本。

二、实时分析能力实现原理

‌数据实时摄入链路‌:提供 Stream Load/Broker Load 等毫秒级延迟写入接口‌,支持 Kafka、Flink 等流式数据直接写入内存 MemTable。

内存数据通过:两阶段提交协议‌ 保障事务一致性,写入完成即可查。

‌内存优先处理机制‌:新写入数据优先驻留内存 MemTable,查询时自动合并内存与磁盘数据,实现读写分离‌(Write-Ahead 模式)。

后台异步 Compaction 对磁盘数据进行有序归并,避免实时查询时的多版本合并开销。

‌存算一体架构设计‌

FE 节点统一管理元数据并生成分布式执行计划,BE节点本地化执行计算任务,消除传统数仓 ETL 链路延迟。

支持联邦查询‌ 功能,通过外表机制直接查询 Hive/Iceberg 数据湖,避免数据迁移实现分钟级数据可见。

Doris 通过 ‌分布式并行架构+列式存储优化‌ 解决海量数据扫描效率问题,依托 ‌内存优先处理+存算一体设计‌ 实现亚秒级实时响应。其核心技术已在顺丰、美团等企业实现单集群日均 100 万+查询的稳定支撑,成为替代传统 Presto/Hive 的实时数仓首选方案。

相关推荐
Pluchon4 小时前
硅基计划4.0 算法 简单模拟实现位图&布隆过滤器
java·大数据·开发语言·数据结构·算法·哈希算法
岁岁种桃花儿4 小时前
Flink从入门到上天系列第一篇:搭建第一个Flink程序
大数据·linux·flink·数据同步
历程里程碑4 小时前
普通数组-----除了自身以外数组的乘积
大数据·javascript·python·算法·elasticsearch·搜索引擎·flask
无忧智库4 小时前
某市“十五五”智慧教育2.0建设方案深度解读:从数字化转型到数智化融合的跨越之路(WORD)
大数据
eyun_185004 小时前
把健康小屋搬进单位 让职工暖心 让履职安心
大数据·人工智能·经验分享
会飞的老朱8 小时前
医药集团数智化转型,智能综合管理平台激活集团管理新效能
大数据·人工智能·oa协同办公
AI_567813 小时前
AWS EC2新手入门:6步带你从零启动实例
大数据·数据库·人工智能·机器学习·aws
CRzkHbaXTmHw13 小时前
探索Flyback反激式开关电源的Matlab Simulink仿真之旅
大数据
七夜zippoe13 小时前
CANN Runtime任务描述序列化与持久化源码深度解码
大数据·运维·服务器·cann
盟接之桥14 小时前
盟接之桥说制造:引流品 × 利润品,全球电商平台高效产品组合策略(供讨论)
大数据·linux·服务器·网络·人工智能·制造