Doris高性能读能力与实时性实现原理

一、读性能优异的核心原因

‌ MPP 分布式架构‌:采用大规模并行处理架构,将查询请求拆解为多个子任务并行执行,BE 节点之间通过数据分片并行计算‌实现负载均衡,线性扩展处理能力。

单查询可同时利用多节点 CPU 资源,10PB级数据亚秒级响应(P95 响应时间 <1 秒)。

‌向量化执行引擎‌

基于 SIMD 指令集的向量化处理,单次运算处理1024行数据块‌,相比传统行式引擎效率提升 5-10 倍。

通过减少虚函数调用、提升 CPU 缓存命中率等优化,降低复杂查询的计算开销。

‌ 列存储与智能压缩‌:数据按列存储配合 ‌ZSTD/LZ4 压缩算法‌,相同数据量下 I/O 吞吐量比行存降低 60%-90%。

通过 ‌前缀索引+稀疏索引‌ 组合,快速定位目标数据块,减少磁盘扫描范围。

‌ 数据局部性优化‌:分布式存储层 BE 节点同时承担计算任务,消除传统架构中存储与计算分离的跨网络数据传输开销‌。

分区分桶策略保障相同分片数据集中存储,降低 Join 操作的数据 Shuffle 成本。

二、实时分析能力实现原理

‌数据实时摄入链路‌:提供 Stream Load/Broker Load 等毫秒级延迟写入接口‌,支持 Kafka、Flink 等流式数据直接写入内存 MemTable。

内存数据通过:两阶段提交协议‌ 保障事务一致性,写入完成即可查。

‌内存优先处理机制‌:新写入数据优先驻留内存 MemTable,查询时自动合并内存与磁盘数据,实现读写分离‌(Write-Ahead 模式)。

后台异步 Compaction 对磁盘数据进行有序归并,避免实时查询时的多版本合并开销。

‌存算一体架构设计‌

FE 节点统一管理元数据并生成分布式执行计划,BE节点本地化执行计算任务,消除传统数仓 ETL 链路延迟。

支持联邦查询‌ 功能,通过外表机制直接查询 Hive/Iceberg 数据湖,避免数据迁移实现分钟级数据可见。

Doris 通过 ‌分布式并行架构+列式存储优化‌ 解决海量数据扫描效率问题,依托 ‌内存优先处理+存算一体设计‌ 实现亚秒级实时响应。其核心技术已在顺丰、美团等企业实现单集群日均 100 万+查询的稳定支撑,成为替代传统 Presto/Hive 的实时数仓首选方案。

相关推荐
爱吃面的猫6 分钟前
大数据Hadoop之——Flink1.17.0安装与使用(非常详细)
大数据·hadoop·分布式
Fireworkitte1 小时前
安装 Elasticsearch IK 分词器
大数据·elasticsearch
ywyy67982 小时前
短剧系统开发定制全流程解析:从需求分析到上线的专业指南
大数据·需求分析·短剧·推客系统·推客小程序·短剧系统开发·海外短剧系统开发
暗影八度4 小时前
Spark流水线数据质量检查组件
大数据·分布式·spark
白鲸开源4 小时前
Linux 基金会报告解读:开源 AI 重塑经济格局,有人失业,有人涨薪!
大数据
海豚调度4 小时前
Linux 基金会报告解读:开源 AI 重塑经济格局,有人失业,有人涨薪!
大数据·人工智能·ai·开源
白鲸开源4 小时前
DolphinScheduler+Sqoop 入门避坑:一文搞定数据同步常见异常
大数据
学术小八5 小时前
第二届云计算与大数据国际学术会议(ICCBD 2025)
大数据·云计算
求职小程序华东同舟求职6 小时前
龙旗科技社招校招入职测评25年北森笔试测评题库答题攻略
大数据·人工智能·科技
二二孚日6 小时前
自用华为ICT云赛道Big Data第六章知识点-分布式搜索服务ElasticSearch
大数据·华为