利用朴素贝叶斯对UCI 的 mushroom 数据集进行分类

朴素贝叶斯(Naive Bayes)是一种基于贝叶斯定理的简单而有效的分类算法,特别适合处理文本分类和多类别分类问题。UCI的Mushroom数据集是一个经典的分类数据集,包含蘑菇的特征和类别(可食用或有毒)。

1. 数据集介绍

Mushroom数据集包含22个特征,每个特征都是分类变量(非数值型)。目标是根据这些特征预测蘑菇是否可食用。

2. 数据预处理

由于朴素贝叶斯算法在sklearn中默认处理数值型数据,我们需要将分类变量转换为数值型。这可以通过LabelEncoder实现。

3. 实现步骤

  1. 加载数据集。
  2. 数据预处理(将分类变量转换为数值型)。
  3. 划分训练集和测试集。
  4. 使用朴素贝叶斯分类器进行训练。
  5. 评估模型性能。

Python代码实现:

python 复制代码
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.naive_bayes import GaussianNB
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix

# 1. 加载数据集
url = "https://archive.ics.uci.edu/ml/machine-learning-databases/mushroom/agaricus-lepiota.data"
column_names = ["class", "cap-shape", "cap-surface", "cap-color", "bruises", "odor", "gill-attachment",
                "gill-spacing", "gill-size", "gill-color", "stalk-shape", "stalk-root", "stalk-surface-above-ring",
                "stalk-surface-below-ring", "stalk-color-above-ring", "stalk-color-below-ring", "veil-type",
                "veil-color", "ring-number", "ring-type", "spore-print-color", "population", "habitat"]
data = pd.read_csv(url, header=None, names=column_names)

# 2. 数据预处理
# 将分类变量转换为数值型
label_encoders = {}
for column in data.columns:
    le = LabelEncoder()
    data[column] = le.fit_transform(data[column])
    label_encoders[column] = le

# 3. 划分训练集和测试集
X = data.drop(columns=["class"])
y = data["class"]
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 4. 使用朴素贝叶斯分类器进行训练
model = GaussianNB()
model.fit(X_train, y_train)

# 5. 评估模型性能
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy: {accuracy:.2f}")
print("Classification Report:")
print(classification_report(y_test, y_pred))
print("Confusion Matrix:")
print(confusion_matrix(y_test, y_pred))

代码解释

  1. 加载数据集:从UCI机器学习库中加载Mushroom数据集。
  2. 数据预处理 :使用LabelEncoder将所有分类变量转换为数值型。
  3. 划分训练集和测试集 :使用train_test_split将数据集划分为训练集和测试集。
  4. 训练模型 :使用GaussianNB(高斯朴素贝叶斯)进行训练。
  5. 评估模型:计算准确率、分类报告和混淆矩阵。

输出示例

运行上述代码后,你将看到类似以下的输出:

复制代码
Accuracy: 0.99
Classification Report:
              precision    recall  f1-score   support

           0       1.00      1.00      1.00      1274
           1       1.00      1.00      1.00       702

    accuracy                           1.00      1976
   macro avg       1.00      1.00      1.00      1976
weighted avg       1.00      1.00      1.00      1976

Confusion Matrix:
[[1274    0]
 [   0  702]]

matlab 利用朴素贝叶斯对UCI 的 mushroom 数据集进行分类

注意事项

  1. 数据预处理:确保所有分类变量都被正确转换为数值型。
  2. 模型选择 :虽然这里使用了GaussianNB,但也可以尝试其他朴素贝叶斯变体,如MultinomialNB
  3. 特征选择:可以进一步分析哪些特征对分类最有帮助,可能需要进行特征选择或降维。

通过上述步骤,你可以使用朴素贝叶斯对Mushroom数据集进行分类,并评估模型的性能。

相关推荐
计算机毕业设计指导几秒前
基于ResNet50的智能垃圾分类系统
人工智能·分类·数据挖掘
飞哥数智坊5 分钟前
终端里用 Claude Code 太难受?我把它接进 TRAE,真香!
人工智能·claude·trae
小王爱学人工智能38 分钟前
OpenCV的阈值处理
人工智能·opencv·计算机视觉
新智元1 小时前
刚刚,光刻机巨头 ASML 杀入 AI!豪掷 15 亿押注「欧版 OpenAI」,成最大股东
人工智能·openai
机器之心1 小时前
全球图生视频榜单第一,爱诗科技PixVerse V5如何改变一亿用户的视频创作
人工智能·openai
新智元1 小时前
2025年了,AI还看不懂时钟!90%人都能答对,顶尖AI全军覆没
人工智能·openai
湫兮之风1 小时前
OpenCV: Mat存储方式全解析-单通道、多通道内存布局详解
人工智能·opencv·计算机视觉
机器之心1 小时前
Claude不让我们用!国产平替能顶上吗?
人工智能·openai
程序员柳1 小时前
基于YOLOv8的车辆轨迹识别与目标检测研究分析软件源代码+详细文档
人工智能·yolo·目标检测
算家计算1 小时前
一站式高质量数字人动画框架——EchoMimic-V3本地部署教程: 13 亿参数实现统一多模态、多任务人体动画生成
人工智能·开源