【自然语言处理与大模型】向量数据库:Milvus使用指南

Milvus 是一个开源的向量数据库,Milvus Lite 是 Milvus 向量数据库的轻量级版本,能为 AI 应用提供向量相似性搜索功能。它非常适合用于快速原型开发、资源有限的环境。

安装

bash 复制代码
# 安装 milvus 要求Python 3.8+
pip install "pymilvus[model]"

使用

python 复制代码
from pymilvus import MilvusClient
from pymilvus import model



# 创建一个客户端
client = MilvusClient("./milvus_demo.db")  # 指定一个存储所有数据的文件路径

# 加载本地的词嵌入向量模型
"""
如果你安装了,model依赖则默认值为all-MiniLM-L6-v2
"""
sentence_transformer_ef = model.dense.SentenceTransformerEmbeddingFunction(
    model_name='all-MiniLM-L6-v2', # 指定模型路径
    device='cpu' # 指定要使用的设备,例如"cpu"或"cuda:0"
)


# 创建一个集合
# 检查名为"demo_collection"的集合是否存在
if client.has_collection(collection_name="demo_collection"):
    # 如果存在则删除该集合
    client.drop_collection(collection_name="demo_collection")

client.create_collection(
    collection_name="demo_collection",
    dimension=768,  # 指定向量的维度
)

docs = [
    "Artificial intelligence was founded as an academic discipline in 1956.",
    "Alan Turing was the first person to conduct substantial research in AI.",
    "Born in Maida Vale, London, Turing was raised in southern England.",
]

# 将文档向量化
vectors = sentence_transformer_ef.encode_documents(docs)

# 打印embedding后的文档
print("Embeddings:", vectors)
print("Dim:", sentence_transformer_ef.dim, vectors[0].shape)

data = [
    {"id": i, "vector": vectors[i], "text": docs[i], "subject": "history"} 
    for i in range(len(docs))
]




# 插:将数据插入向量数据库
client.insert("demo_collection", data)



# 查:search相似度搜索 或 query关键字匹配
res = client.search(
    collection_name="demo_collection",
    data=[vectors[0]],
    filter="subject == 'history'",   # 过滤条件
    limit=2,  # 最相似的2条
    output_fields=["text", "subject"]
)
print(res)

res = client.query(
    collection_name="demo_collection",
    filter="subject == 'history'",     # 过滤条件
    output_fields=["text", "subject"]  # 只展示的字段
)
print(res)




# 改:修改其中id=1文档
update_docs = ["Artificial intelligence research began in mid-20th century"]
update_vectors = sentence_transformer_ef.encode_documents(update_docs)
update_data = [{
    "id": 1,  # 指定要更新的文档ID
    "text": "Artificial intelligence research began in mid-20th century",  # 新文本
    "vector": update_vectors[0],   # 新向量
    "subject": "computer_science"  # 新分类
}]
res = client.upsert(
    collection_name="demo_collection",
    data=[update_data]  # 注意数据需要是列表格式
)
print(res)




# 删:删除一个文档
res = client.delete(
    collection_name="demo_collection",
    filter="subject == 'history'"  # 过滤条件
)
print(res)

更多案例教学可以查看官方的教程:

Milvus官方文档https://milvus.io/docs/zh/quickstart.md

相关推荐
InfiSight智睿视界28 分钟前
AI 技术助力汽车美容行业实现精细化运营管理
大数据·人工智能
没有钱的钱仔1 小时前
机器学习笔记
人工智能·笔记·机器学习
听风吹等浪起1 小时前
基于改进TransUNet的港口船只图像分割系统研究
人工智能·深度学习·cnn·transformer
化作星辰2 小时前
深度学习_原理和进阶_PyTorch入门(2)后续语法3
人工智能·pytorch·深度学习
boonya2 小时前
ChatBox AI 中配置阿里云百炼模型实现聊天对话
人工智能·阿里云·云计算·chatboxai
8K超高清2 小时前
高校巡展:中国传媒大学+河北传媒学院
大数据·运维·网络·人工智能·传媒
老夫的码又出BUG了2 小时前
预测式AI与生成式AI
人工智能·科技·ai
AKAMAI3 小时前
AI 边缘计算:决胜未来
人工智能·云计算·边缘计算
flex88883 小时前
输入一个故事主题,使用大语言模型生成故事视频【视频中包含大模型生成的图片、故事内容,以及音频和字幕信息】
人工智能·语言模型·自然语言处理
TTGGGFF3 小时前
人工智能:大语言模型或为死胡同?拆解AI发展的底层逻辑、争议与未来方向
大数据·人工智能·语言模型