【自然语言处理与大模型】向量数据库:Milvus使用指南

Milvus 是一个开源的向量数据库,Milvus Lite 是 Milvus 向量数据库的轻量级版本,能为 AI 应用提供向量相似性搜索功能。它非常适合用于快速原型开发、资源有限的环境。

安装

bash 复制代码
# 安装 milvus 要求Python 3.8+
pip install "pymilvus[model]"

使用

python 复制代码
from pymilvus import MilvusClient
from pymilvus import model



# 创建一个客户端
client = MilvusClient("./milvus_demo.db")  # 指定一个存储所有数据的文件路径

# 加载本地的词嵌入向量模型
"""
如果你安装了,model依赖则默认值为all-MiniLM-L6-v2
"""
sentence_transformer_ef = model.dense.SentenceTransformerEmbeddingFunction(
    model_name='all-MiniLM-L6-v2', # 指定模型路径
    device='cpu' # 指定要使用的设备,例如"cpu"或"cuda:0"
)


# 创建一个集合
# 检查名为"demo_collection"的集合是否存在
if client.has_collection(collection_name="demo_collection"):
    # 如果存在则删除该集合
    client.drop_collection(collection_name="demo_collection")

client.create_collection(
    collection_name="demo_collection",
    dimension=768,  # 指定向量的维度
)

docs = [
    "Artificial intelligence was founded as an academic discipline in 1956.",
    "Alan Turing was the first person to conduct substantial research in AI.",
    "Born in Maida Vale, London, Turing was raised in southern England.",
]

# 将文档向量化
vectors = sentence_transformer_ef.encode_documents(docs)

# 打印embedding后的文档
print("Embeddings:", vectors)
print("Dim:", sentence_transformer_ef.dim, vectors[0].shape)

data = [
    {"id": i, "vector": vectors[i], "text": docs[i], "subject": "history"} 
    for i in range(len(docs))
]




# 插:将数据插入向量数据库
client.insert("demo_collection", data)



# 查:search相似度搜索 或 query关键字匹配
res = client.search(
    collection_name="demo_collection",
    data=[vectors[0]],
    filter="subject == 'history'",   # 过滤条件
    limit=2,  # 最相似的2条
    output_fields=["text", "subject"]
)
print(res)

res = client.query(
    collection_name="demo_collection",
    filter="subject == 'history'",     # 过滤条件
    output_fields=["text", "subject"]  # 只展示的字段
)
print(res)




# 改:修改其中id=1文档
update_docs = ["Artificial intelligence research began in mid-20th century"]
update_vectors = sentence_transformer_ef.encode_documents(update_docs)
update_data = [{
    "id": 1,  # 指定要更新的文档ID
    "text": "Artificial intelligence research began in mid-20th century",  # 新文本
    "vector": update_vectors[0],   # 新向量
    "subject": "computer_science"  # 新分类
}]
res = client.upsert(
    collection_name="demo_collection",
    data=[update_data]  # 注意数据需要是列表格式
)
print(res)




# 删:删除一个文档
res = client.delete(
    collection_name="demo_collection",
    filter="subject == 'history'"  # 过滤条件
)
print(res)

更多案例教学可以查看官方的教程:

Milvus官方文档https://milvus.io/docs/zh/quickstart.md

相关推荐
文火冰糖的硅基工坊12 分钟前
[创业之路-369]:企业战略管理案例分析-9-战略制定-差距分析的案例之华为
人工智能·华为·架构·系统架构·跨学科·跨学科融合
平和男人杨争争44 分钟前
山东大学计算机图形学期末复习15——CG15
人工智能·算法·计算机视觉·图形渲染
lucky_lyovo1 小时前
OpenCV图像边缘检测
人工智能·opencv·计算机视觉
集和诚JHCTECH1 小时前
NODE-I916 & I721模块化电脑发布,AI算力与超低功耗的完美平衡
大数据·人工智能·电脑
恩喜玛生物1 小时前
深度学习实战 04:卷积神经网络之 VGG16 复现三(训练)
人工智能·深度学习·cnn
那雨倾城2 小时前
使用 OpenCV 实现万花筒效果
图像处理·人工智能·opencv·计算机视觉
小胡说人工智能3 小时前
深度剖析:Dify+Sanic+Vue+ECharts 搭建 Text2SQL 项目 sanic-web 的 Debug 实战
人工智能·python·llm·text2sql·dify·vllm·ollama
liuyang-neu4 小时前
目标检测DN-DETR(2022)详细解读
人工智能·深度学习·目标检测
云卓SKYDROID4 小时前
无人机报警器360°检测技术分析!
人工智能·无人机·科普·高科技·报警器
白熊1884 小时前
【图像大模型】Stable Diffusion 3 Medium:多模态扩散模型的技术突破与实践指南
人工智能·计算机视觉·stable diffusion·大模型