力扣刷题(第三十三天)

灵感来源

  • 保持更新,努力学习

  • python脚本学习

二叉树的后序遍历

解题思路

后序遍历是二叉树遍历的一种,顺序为:左子树 → 右子树 → 根节点。递归实现后序遍历非常直观,按照遍历顺序递归访问左右子树后访问根节点即可。而非递归实现通常需要借助栈结构模拟递归过程,关键在于如何确保右子树在根节点之前被访问。

递归解法代码

python 复制代码
class Solution:
    def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        res = []
        def postorder(node):
            if not node:
                return
            postorder(node.left)
            postorder(node.right)
            res.append(node.val)
        postorder(root)
        return res

迭代解法代码

python 复制代码
class Solution:
    def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        res = []
        if not root:
            return res
        stack = []
        prev = None  # 记录前一个访问的节点
        current = root
        
        while stack or current:
            # 遍历到最左子节点
            while current:
                stack.append(current)
                current = current.left
            current = stack.pop()
            
            # 如果右子树为空或已访问过右子树
            if not current.right or current.right == prev:
                res.append(current.val)
                prev = current
                current = None  # 避免再次遍历左子树
            else:
                # 右子树存在且未访问,将当前节点重新压栈
                stack.append(current)
                current = current.right
        
        return res

逐行解释

递归解法

python 复制代码
class Solution:
    def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        # 存储遍历结果的列表
        res = []
        
        # 定义内部递归函数
        def postorder(node):
            # 递归终止条件:节点为空
            if not node:
                return
            # 递归遍历左子树
            postorder(node.left)
            # 递归遍历右子树
            postorder(node.right)
            # 访问当前节点(将值加入结果列表)
            res.append(node.val)
        
        # 从根节点开始递归
        postorder(root)
        return res

迭代解法

python 复制代码
class Solution:
    def postorderTraversal(self, root: Optional[TreeNode]) -> List[int]:
        res = []  # 存储遍历结果
        if not root:  # 处理空树
            return res
        
        stack = []  # 辅助栈
        prev = None  # 记录前一个访问的节点,用于判断右子树是否已访问
        current = root  # 当前节点指针
        
        while stack or current:  # 栈非空或当前节点非空时循环
            # 遍历到当前子树的最左节点,并将路径上的节点压入栈
            while current:
                stack.append(current)
                current = current.left
            
            # 弹出栈顶节点进行处理
            current = stack.pop()
            
            # 条件1:右子树为空,无需处理
            # 条件2:右子树已被访问过(通过prev判断)
            if not current.right or current.right == prev:
                res.append(current.val)  # 访问当前节点
                prev = current  # 更新prev为当前节点
                current = None  # 置空当前节点,避免重复处理左子树
            else:
                # 右子树存在且未被访问,将当前节点重新压栈
                stack.append(current)
                # 转向处理右子树
                current = current.right
        
        return res

关键点解释

  1. 递归解法

    • 递归函数postorder的执行顺序决定了遍历方式
    • 先处理左右子树,最后处理根节点,天然满足后序遍历定义
  2. 迭代解法

    • 使用prev指针解决后序遍历的关键问题:如何确定右子树已被访问
    • current.right == prev时,表示右子树已完成遍历,可处理当前节点
    • 通过栈的压入 / 弹出操作模拟递归调用栈的行为
相关推荐
聚客AI15 小时前
🙋‍♀️Transformer训练与推理全流程:从输入处理到输出生成
人工智能·算法·llm
大怪v17 小时前
前端:人工智能?我也会啊!来个花活,😎😎😎“自动驾驶”整起!
前端·javascript·算法
惯导马工19 小时前
【论文导读】ORB-SLAM3:An Accurate Open-Source Library for Visual, Visual-Inertial and
深度学习·算法
骑自行车的码农20 小时前
【React用到的一些算法】游标和栈
算法·react.js
博笙困了21 小时前
AcWing学习——双指针算法
c++·算法
moonlifesudo21 小时前
322:零钱兑换(三种方法)
算法
NAGNIP2 天前
大模型框架性能优化策略:延迟、吞吐量与成本权衡
算法
美团技术团队2 天前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
Fanxt_Ja2 天前
【LeetCode】算法详解#15 ---环形链表II
数据结构·算法·leetcode·链表
侃侃_天下2 天前
最终的信号类
开发语言·c++·算法