sklearn分类场景案例01

python 复制代码
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix, accuracy_score
from sklearn.pipeline import make_pipeline

# 1. 加载数据
iris = datasets.load_iris()
X = iris.data[:, :2]  # 只取前两个特征便于可视化
y = iris.target

# 2. 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(
    X, y, test_size=0.3, random_state=42
)

# 3. 创建模型管道(预处理+分类器)
model = make_pipeline(
    StandardScaler(),  # 特征标准化
    SVC(kernel='rbf', gamma='auto')  # 使用SVM分类器
)

# 4. 训练模型
model.fit(X_train, y_train)

# 5. 预测与评估
y_pred = model.predict(X_test)
print(f"Accuracy: {accuracy_score(y_test, y_pred):.2f}")
print("Classification Report:\n", classification_report(y_test, y_pred))

# 6. 可视化决策边界
plt.figure(figsize=(10, 6))
h = 0.02  # 网格步长
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))

Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(xx, yy, Z, alpha=0.3)

# 绘制训练点
plt.scatter(X_train[:, 0], X_train[:, 1], c=y_train, edgecolors='k', label='Train')
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_test, marker='x', label='Test')
plt.xlabel('Sepal length')
plt.ylabel('Sepal width')
plt.title('SVM Classification on Iris Dataset')
plt.legend()
plt.show()

运行效果图

相关推荐
1234452几秒前
Agent入门实战-一个题目生成Agent
人工智能·后端
IT_陈寒3 分钟前
Java性能调优实战:5个被低估却提升30%效率的JVM参数
前端·人工智能·后端
taihexuelang5 分钟前
大模型部署
人工智能·docker·容器
轻竹办公PPT6 分钟前
2025实测!AI生成PPT工具全总结
人工智能·python·powerpoint
做科研的周师兄7 分钟前
【MATLAB 实战】栅格数据 K-Means 聚类(分块处理版)—— 解决大数据内存溢出、运行卡顿问题
人工智能·算法·机器学习·matlab·kmeans·聚类
彼岸花开了吗7 分钟前
构建AI智能体:八十一、SVD模型压缩的艺术:如何科学选择K值实现最佳性能
人工智能·python·llm
俞凡9 分钟前
AI 智能体高可靠设计模式:去中心化黑板协作
人工智能
kylezhao20199 分钟前
Halcon 自带案例(Create_mode_green_dot)讲解
图像处理·人工智能·halcon
AI小怪兽15 分钟前
轻量、实时、高精度!MIE-YOLO:面向精准农业的多尺度杂草检测新框架 | MDPI AgriEngineering 2026
开发语言·人工智能·深度学习·yolo·无人机