人脸识别,使用 deepface + api + flask, 改写 + 调试

1. 起因, 目的, 感受:

2. 先看效果



3. 过程:

大力改写原始项目中 api 这部分的代码,

原始项目的文件结构太繁杂了:

我把这部分的内容,合为一个文件,即 api.py, 能删尽删。

代码 1, api
python 复制代码
from flask import Flask
from flask_cors import CORS
import argparse
from typing import Union
from flask import Blueprint, request
import numpy as np
import os
import tempfile
import logging
from deepface import DeepFace
from deepface.api.src.modules.core import service
from deepface.commons import image_utils
from deepface.commons.logger import Logger


# 配置日志
logging.basicConfig(level=logging.INFO)
logger = Logger()
blueprint = Blueprint("routes", __name__)


# 辅助函数:将 NumPy 类型转换为 JSON 可序列化格式
def convert_numpy(obj):
    if isinstance(obj, np.floating):
        return float(obj)
    elif isinstance(obj, np.integer):
        return int(obj)
    elif isinstance(obj, np.ndarray):
        return obj.tolist()
    elif isinstance(obj, dict):
        return {k: convert_numpy(v) for k, v in obj.items()}
    elif isinstance(obj, list):
        return [convert_numpy(i) for i in obj]
    return obj

def extract_image_from_request(img_key: str) -> Union[str, np.ndarray]:
    """
    Extracts an image from the request either from json or a multipart/form-data file.

    Args:
        img_key (str): The key used to retrieve the image data
            from the request (e.g., 'img').

    Returns:
        img (str or np.ndarray): Given image detail (base64 encoded string, image path or url)
            or the decoded image as a numpy array.
    """
    if request.files:
        logging.info(f"request: {request}")
        logging.info(f"request.files: {request.files}")
        file = request.files.get(img_key)

        logging.info(f"img_key: {img_key}")
        logging.info(f"file: {file}")

        if file is None:
            raise ValueError(f"Request form data doesn't have {img_key}")

        if file.filename == "":
            raise ValueError(f"No file uploaded for '{img_key}'")

        # 获取文件扩展名
        _, ext = os.path.splitext(file.filename)
        if not ext:
            ext = '.jpg'

        # 保存到临时文件
        with tempfile.NamedTemporaryFile(delete=False, suffix=ext) as temp_file:
            file.save(temp_file.name)
            temp_file_path = temp_file.name
            logging.info(f"Saved temp file: {temp_file_path}, size: {os.path.getsize(temp_file_path)} bytes")

        try:
            if not os.path.exists(temp_file_path):
                raise ValueError(f"Temporary file not found: {temp_file_path}")

            img, _ = image_utils.load_image(temp_file_path)
            if img is None:
                raise ValueError(f"Failed to load image from {temp_file_path}")
            logging.info(f"Loaded image shape: {img.shape if isinstance(img, np.ndarray) else 'not a numpy array'}")
            return img
        finally:
            if os.path.exists(temp_file_path):
                os.unlink(temp_file_path)

    elif request.is_json or request.form:
        logging.info(f"request.json: {request.json}")
        logging.info(f"request.form: {request.form}")

        input_args = request.get_json() or request.form.to_dict()

        if input_args is None:
            raise ValueError("empty input set passed")

        img = input_args.get(img_key)
        if not img:
            raise ValueError(f"'{img_key}' not found in either json or form data request")

        return img

    raise ValueError(f"'{img_key}' not found in request in either json or form data")

@blueprint.route("/")
def home():
    return f"<h1>Welcome to DeepFace API v{DeepFace.__version__}!</h1>"

@blueprint.route("/represent", methods=["POST"])
def represent():
    input_args = (request.is_json and request.get_json()) or (
        request.form and request.form.to_dict()
    )

    try:
        img = extract_image_from_request("img")
    except Exception as err:
        return {"exception": str(err)}, 400

    obj = service.represent(
        img_path=img,
        model_name=input_args.get("model_name", "VGG-Face"),
        detector_backend=input_args.get("detector_backend", "opencv"),
        enforce_detection=input_args.get("enforce_detection", True),
        align=input_args.get("align", True),
        anti_spoofing=input_args.get("anti_spoofing", False),
        max_faces=input_args.get("max_faces"),
    )

    logger.debug(obj)
    return convert_numpy(obj)  # 转换 NumPy 类型

@blueprint.route("/verify", methods=["POST"])
def verify():
    input_args = (request.is_json and request.get_json()) or (
        request.form and request.form.to_dict()
    )

    try:
        img1 = extract_image_from_request("img1")
    except Exception as err:
        return {"exception": str(err)}, 400

    try:
        img2 = extract_image_from_request("img2")
    except Exception as err:
        return {"exception": str(err)}, 400

    verification = service.verify(
        img1_path=img1,
        img2_path=img2,
        model_name=input_args.get("model_name", "VGG-Face"),
        detector_backend=input_args.get("detector_backend", "opencv"),
        distance_metric=input_args.get("distance_metric", "cosine"),
        align=input_args.get("align", True),
        enforce_detection=input_args.get("enforce_detection", True),
        anti_spoofing=input_args.get("anti_spoofing", False),
    )

    logger.debug(verification)
    return convert_numpy(verification)  # 转换 NumPy 类型

@blueprint.route("/analyze", methods=["POST"])
def analyze():
    input_args = (request.is_json and request.get_json()) or (
        request.form and request.form.to_dict()
    )

    try:
        img = extract_image_from_request("img")
        logging.info(f"api 里面收到的 img 是: {type(img)}")
    except Exception as err:
        return {"exception": str(err)}, 400

    actions = input_args.get("actions", ["age", "gender", "emotion", "race"])
    if isinstance(actions, str):
        actions = (
            actions.replace("[", "")
            .replace("]", "")
            .replace("(", "")
            .replace(")", "")
            .replace('"', "")
            .replace("'", "")
            .replace(" ", "")
            .split(",")
        )

    try:
        demographies = service.analyze(
            img_path=img,
            actions=actions,
            detector_backend=input_args.get("detector_backend", "opencv"),
            enforce_detection=input_args.get("enforce_detection", True),
            align=input_args.get("align", True),
            anti_spoofing=input_args.get("anti_spoofing", False),
        )
    except Exception as e:
        return {"error": f"Exception while analyzing: {str(e)}"}, 400

    logger.debug(demographies)
    return convert_numpy(demographies)  # 转换 NumPy 类型

def create_app():
    app = Flask(__name__)
    CORS(app)
    app.register_blueprint(blueprint)
    logger.info(f"Welcome to DeepFace API v{DeepFace.__version__}!")
    return app


if __name__ == "__main__":
    deepface_app = create_app()
    parser = argparse.ArgumentParser()
    parser.add_argument("-p", "--port", type=int, default=5005, help="Port of serving api")
    args = parser.parse_args()
    deepface_app.run(host="0.0.0.0", port=args.port, debug=True)
代码 2, flask app.py
  • 此项目,后端 api 是用 flask 写的, 前端我也用 flask 来写。
python 复制代码
from flask import Flask, render_template, request, redirect, url_for, flash
from werkzeug.utils import secure_filename
import os
import uuid
import requests
import json
import numpy as np

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = 'static/uploads'
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024  # 限制上传文件大小为16MB
app.secret_key = 'your_secret_key'  # 用于 flash 消息

# DeepFace API 的地址
DEEPFACE_API_URL = 'http://127.0.0.1:5005/analyze'

# 允许的图片扩展名
ALLOWED_EXTENSIONS = {'png', 'jpg', 'jpeg'}

# 检查文件扩展名是否允许
def allowed_file(filename):
    return '.' in filename and filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

# 确保上传文件夹存在
if not os.path.exists(app.config['UPLOAD_FOLDER']):
    os.makedirs(app.config['UPLOAD_FOLDER'])

# 辅助函数:将 NumPy 数据转换为 JSON 可序列化格式
def convert_numpy(obj):
    if isinstance(obj, np.floating):
        return float(obj)
    elif isinstance(obj, np.integer):
        return int(obj)
    elif isinstance(obj, np.ndarray):
        return obj.tolist()
    elif isinstance(obj, dict):
        return {k: convert_numpy(v) for k, v in obj.items()}
    elif isinstance(obj, list):
        return [convert_numpy(i) for i in obj]
    return obj

@app.route('/')
def index():
    # return render_template('index.html')
    return render_template('home.html')

@app.route('/analyze', methods=['POST'])
def analyze():

    # 处理文件上传
    if 'file' in request.files and request.files['file'].filename:
        file = request.files['file']
        if not allowed_file(file.filename):
            flash('不支持的文件类型,仅支持 PNG、JPG、JPEG')
            return redirect(url_for('index'))

        # 保存文件(用于前端显示)
        filename = str(uuid.uuid4()) + '.' + file.filename.rsplit('.', 1)[1].lower()
        file_path = os.path.join(app.config['UPLOAD_FOLDER'], filename)
        file.save(file_path)

        # 重置文件流指针
        file.stream.seek(0)

        # 发送到 DeepFace API
        files = {'img': (filename, file.stream, file.content_type)}
        data = {
            'actions': json.dumps(['age', 'gender', 'emotion', 'race']),
            'detector_backend': 'opencv',
            'enforce_detection': 'true',
            'align': 'true',
            'anti_spoofing': 'false'
        }
        response = requests.post(DEEPFACE_API_URL, files=files, data=data)

    # 处理 Base64 输入(保留以兼容现有前端)
    elif request.form.get('base64'):
        base64_string = request.form['base64']
        if 'base64,' in base64_string:
            base64_string = base64_string.split('base64,')[1]
        payload = {
            'img': f'data:image/jpeg;base64,{base64_string}',
            'actions': ['age', 'gender', 'emotion', 'race'],
            'detector_backend': 'opencv',
            'enforce_detection': True,
            'align': True,
            'anti_spoofing': False
        }
        headers = {'Content-Type': 'application/json'}
        response = requests.post(DEEPFACE_API_URL, json=payload, headers=headers)

    else:
        flash('请上传图片文件或提供 Base64 字符串')
        return render_template('home.html')

    # 检查响应
    if response.status_code == 200:
        results = response.json()
        results = convert_numpy(results)
        flash('分析成功!')
        print(f"results: {results}")
        return render_template('home.html',   results=results, image_url=file_path if 'file' in request.files else None)

    else:
        print("API 响应:", response.text)
        error_msg = response.json()
        flash(f'API 调用失败:{error_msg}')
        return  render_template('home.html')

if __name__ == '__main__':
    app.run(debug=True, host='0.0.0.0', port=8989)

4. 结论 ,todo, 感受

  • 有些地方我觉得能自己写,但是却不行。 步子太大了。 即便是有AI, 很多地方我还是不理解。
  • 这个项目只能说是,不尽完善。 所以我做起来,麻烦重重。
  • 一个球投不进,也不能全怪我,有可能是队友球传的不好,传的太偏了,太低了。

希望对大家有帮助。

相关推荐
LKAI.12 分钟前
传统方式部署(RuoYi-Cloud)微服务
java·linux·前端·后端·微服务·node.js·ruoyi
Victor35623 分钟前
Redis(11)如何通过命令行操作Redis?
后端
Victor35624 分钟前
Redis(10)如何连接到Redis服务器?
后端
一百天成为python专家1 小时前
Python循环语句 从入门到精通
开发语言·人工智能·python·opencv·支持向量机·计算机视觉
Sunhen_Qiletian1 小时前
朝花夕拾(五)--------Python 中函数、库及接口的详解
开发语言·python
三年呀2 小时前
标题:移动端安全加固:发散创新,筑牢安全防线引言:随着移动互联网
网络·python·安全
他日若遂凌云志2 小时前
深入剖析 Fantasy 框架的消息设计与序列化机制:协同架构下的高效转换与场景适配
后端
快手技术2 小时前
快手Klear-Reasoner登顶8B模型榜首,GPPO算法双效强化稳定性与探索能力!
后端
二闹2 小时前
三个注解,到底该用哪一个?别再傻傻分不清了!
后端
用户49055816081253 小时前
当控制面更新一条 ACL 规则时,如何更新给数据面
后端