双均线量化交易策略指南

策略原理

采用两条不同周期的简单移动平均线(SMA):

  • 短期均线:5日线(快速反应价格变化)
  • 长期均线:20日线(反映长期趋势)

交易信号生成规则

复制代码
当 5日线 > 20日线 → 买入信号
当 5日线 < 20日线 → 卖出信号

Python实现模块

1. 数据获取模块

python 复制代码
import yfinance as yf

def fetch_stock_data(ticker, start_date, end_date):
    """
    获取股票历史数据
    参数:
    ticker -- 股票代码 (例:'AAPL')
    start_date -- 开始日期 (格式:'YYYY-MM-DD')
    end_date -- 结束日期
    """
    return yf.download(ticker, start=start_date, end=end_date)

2. 策略计算模块

python 复制代码
def calculate_signals(data, short_window=5, long_window=20):
    """
    计算双均线和交易信号
    参数说明:
    short_window -- 短期均线周期(默认5日)
    long_window -- 长期均线周期(默认20日)
    """
    data['SMA5'] = data['Close'].rolling(short_window).mean()
    data['SMA20'] = data['Close'].rolling(long_window).mean()
    data['Signal'] = np.where(data['SMA5'] > data['SMA20'], 1, -1)
    return data

3. 回测引擎

python 复制代码
def backtest_strategy(data, initial_capital=1000000):
    """
    策略回测模块
    参数:
    initial_capital -- 初始资金(默认100万)
    """
    position = 0
    capital_curve = [initial_capital]
    
    for i in range(1, len(data)):
        if data['Signal'][i-1] == 1 and position == 0:
            position = capital_curve[-1] / data['Close'][i]
            capital_curve.append(position * data['Close'][i])
        elif data['Signal'][i-1] == -1 and position != 0:
            capital_curve.append(capital_curve[-1])
            position = 0
        else:
            capital_curve.append(position * data['Close'][i] if position else capital_curve[-1])
    
    return pd.Series(capital_curve, index=data.index)

可视化分析

python 复制代码
import matplotlib.pyplot as plt

plt.figure(figsize=(12,6))
plt.plot(data['Close'], label='收盘价', alpha=0.5)
plt.plot(data['SMA5'], label='5日均线', linestyle='--')
plt.plot(data['SMA20'], label='20日均线', linestyle='-.')
plt.scatter(data[data['Signal'].diff() != 0].index, 
           data['Close'][data['Signal'].diff() != 0], 
           c=data['Signal'][data['Signal'].diff() != 0].map({1:'g', -1:'r'}),
           marker='^', s=100)
plt.title('双均线策略交易信号可视化')
plt.legend()
plt.savefig('strategy_visualization.png', dpi=300, bbox_inches='tight')

策略优化建议

参数调优组合

组合名称 短期均线 长期均线 适用场景
激进型 3日 10日 高波动市场
平衡型 5日 20日 趋势行情
保守型 10日 50日 长线投资

改进方向

  1. 增加交易成本计算(佣金、滑点)
  2. 结合波动率过滤避免震荡行情
  3. 添加止损止盈机制
  4. 多品种回测验证策略普适性

使用示例

python 复制代码
if __name__ == "__main__":
    # 获取数据
    data = fetch_stock_data('AAPL', '2020-01-01', '2023-12-31')
    
    # 计算策略
    strategy_data = calculate_signals(data)
    
    # 执行回测
    results = backtest_strategy(strategy_data)
    
    # 展示结果
    print(f"累计收益率:{(results[-1]/1000000-1)*100:.2f}%")

注意事项

❗ 实际交易需考虑以下因素:

  • 避免在开盘价跳空时执行信号
  • 不同品种参数需重新优化
  • 回测存在过拟合风险
  • 需定期进行策略再平衡
相关推荐
ikun·5 分钟前
初识 Flask 框架
后端·python·flask
liuweidong08021 小时前
【Pandas】pandas DataFrame sum
python·数据挖掘·pandas
一个天蝎座 白勺 程序猿2 小时前
Python爬虫(34)Python爬虫高阶:动态页面处理与Playwright增强控制深度解析
开发语言·爬虫·python
keyBird在成长2 小时前
Java集合操作:如何避免并发修改异常
java·windows·python
看到代码就头晕2 小时前
python学习 day5
开发语言·python·学习
卡布奇诺-海晨2 小时前
RocketMQ 生产消费消息消息解析与重试机制详解
python·rocketmq·java-rocketmq
stay night483 小时前
DAY31
数据库·python
Pocker_Spades_A3 小时前
Python刷题:神奇的函数
开发语言·python
覆东流5 小时前
python安装与使用
开发语言·python