双均线量化交易策略指南

策略原理

采用两条不同周期的简单移动平均线(SMA):

  • 短期均线:5日线(快速反应价格变化)
  • 长期均线:20日线(反映长期趋势)

交易信号生成规则

复制代码
当 5日线 > 20日线 → 买入信号
当 5日线 < 20日线 → 卖出信号

Python实现模块

1. 数据获取模块

python 复制代码
import yfinance as yf

def fetch_stock_data(ticker, start_date, end_date):
    """
    获取股票历史数据
    参数:
    ticker -- 股票代码 (例:'AAPL')
    start_date -- 开始日期 (格式:'YYYY-MM-DD')
    end_date -- 结束日期
    """
    return yf.download(ticker, start=start_date, end=end_date)

2. 策略计算模块

python 复制代码
def calculate_signals(data, short_window=5, long_window=20):
    """
    计算双均线和交易信号
    参数说明:
    short_window -- 短期均线周期(默认5日)
    long_window -- 长期均线周期(默认20日)
    """
    data['SMA5'] = data['Close'].rolling(short_window).mean()
    data['SMA20'] = data['Close'].rolling(long_window).mean()
    data['Signal'] = np.where(data['SMA5'] > data['SMA20'], 1, -1)
    return data

3. 回测引擎

python 复制代码
def backtest_strategy(data, initial_capital=1000000):
    """
    策略回测模块
    参数:
    initial_capital -- 初始资金(默认100万)
    """
    position = 0
    capital_curve = [initial_capital]
    
    for i in range(1, len(data)):
        if data['Signal'][i-1] == 1 and position == 0:
            position = capital_curve[-1] / data['Close'][i]
            capital_curve.append(position * data['Close'][i])
        elif data['Signal'][i-1] == -1 and position != 0:
            capital_curve.append(capital_curve[-1])
            position = 0
        else:
            capital_curve.append(position * data['Close'][i] if position else capital_curve[-1])
    
    return pd.Series(capital_curve, index=data.index)

可视化分析

python 复制代码
import matplotlib.pyplot as plt

plt.figure(figsize=(12,6))
plt.plot(data['Close'], label='收盘价', alpha=0.5)
plt.plot(data['SMA5'], label='5日均线', linestyle='--')
plt.plot(data['SMA20'], label='20日均线', linestyle='-.')
plt.scatter(data[data['Signal'].diff() != 0].index, 
           data['Close'][data['Signal'].diff() != 0], 
           c=data['Signal'][data['Signal'].diff() != 0].map({1:'g', -1:'r'}),
           marker='^', s=100)
plt.title('双均线策略交易信号可视化')
plt.legend()
plt.savefig('strategy_visualization.png', dpi=300, bbox_inches='tight')

策略优化建议

参数调优组合

组合名称 短期均线 长期均线 适用场景
激进型 3日 10日 高波动市场
平衡型 5日 20日 趋势行情
保守型 10日 50日 长线投资

改进方向

  1. 增加交易成本计算(佣金、滑点)
  2. 结合波动率过滤避免震荡行情
  3. 添加止损止盈机制
  4. 多品种回测验证策略普适性

使用示例

python 复制代码
if __name__ == "__main__":
    # 获取数据
    data = fetch_stock_data('AAPL', '2020-01-01', '2023-12-31')
    
    # 计算策略
    strategy_data = calculate_signals(data)
    
    # 执行回测
    results = backtest_strategy(strategy_data)
    
    # 展示结果
    print(f"累计收益率:{(results[-1]/1000000-1)*100:.2f}%")

注意事项

❗ 实际交易需考虑以下因素:

  • 避免在开盘价跳空时执行信号
  • 不同品种参数需重新优化
  • 回测存在过拟合风险
  • 需定期进行策略再平衡
相关推荐
@我们的天空几秒前
【FastAPI 完整版】路由与请求参数详解(query、path、params、body、form 完整梳理)- 基于 FastAPI 完整版
后端·python·pycharm·fastapi·后端开发·路由与请求
djimon4 分钟前
06年老电脑复活Ubuntu14.04配置Python网站爬自动化
开发语言·python·自动化
wang60212521810 分钟前
本地docker的解释器在pycharm进行调试
python·pycharm·fastapi
SunnyDays101114 分钟前
如何使用 Python 将 ODT 转换为 PDF:完整指南
python·odt转pdf
智算菩萨22 分钟前
【Python自然语言处理】基于NLTK库的英文文本词频统计系统实现原理及应用
开发语言·python·自然语言处理
Ashley_Amanda29 分钟前
Python 常见问题梳理
开发语言·windows·python
比奇堡的猪猪33 分钟前
修改默认conda环境(在win中)
python·conda
萧鼎44 分钟前
深入解析 Python 的 Word 模板引擎:docxtpl 全面指南
开发语言·python·word
Yeats_Liao1 小时前
昇腾910B与DeepSeek:国产算力与开源模型的架构适配分析
人工智能·python·深度学习·神经网络·机器学习·架构·开源
智航GIS1 小时前
11.3 Pandas 模块功能概览
python·信息可视化·pandas