论文略读:If Multi-Agent Debate is the Answer, What is the Question?

202502 arxiv

1 intro

  • 多智能体辩论(Multi-Agent Debate, MAD):通过让多个智能体在大模型推理时展开多轮辩论,可提升生成内容的事实准确性和推理质量
    • 但论文认为,目前多智能体辩论在大多数情况下不敌简单的单智能体方法 Chain-Of-Thought
      • 在 36 种实验配置(覆盖 9 个常见数据集与 4 种大模型)中,MAD 的胜率不足 20%
  • ------>论文提出Heter-MAD,通过简单引入异构模型智能体,无需修改现有 MAD 框架即可稳定提升性能(最高达 30%)

2 主要结论

  • 选取了
    • 5 种 具有代表性的 MAD 框架
      • SoM、MP、EoT、ChatEval 和 AgentVerse
    • 9 个涵盖通用知识、数学推理和编程能力的基准数据集
    • 4 个 基础模型
      • GPT-4o-mini、Claude-3.5-haiku、Llama3.1-8b/70b
    • 两种baseline
      • Chain-of-Thought;self-consistency
    • 评估指标
      • 性能、效率和鲁棒性
  • 在 36 个测试场景中,MAD 方法仅在不到 20% 的情况下优于CoT,更别说SC了
  • MAD 方法消耗了更多的 token,但未能带来稳定的性能提升
  • 增加智能体数量或辩论轮次并未显著改善 MAD 的表现

3 异构MAD效果

  • 论文认为,人类协作成功的关键在于个体多样性
    • 但现有 MAD 方法大多使用同一模型的多个实例进行评测,忽视了模型多样性可能带来的性能提升
  • ------>提出了 Heter-MAD 方法:在MAD 框架中,每个 LLM 智能体随机从异构模型池中选择模型生成答案
    • 无需改变现有 MAD 框架结构,却能显著且稳定地提升性能
相关推荐
Magnetic_h2 小时前
【iOS】锁的原理
笔记·学习·macos·ios·objective-c·cocoa·xcode
Olrookie2 小时前
ruoyi-vue(十一)——代码生成
笔记·后端
yuxb732 小时前
Ansible 学习笔记:变量事实管理、任务控制与文件部署
linux·运维·笔记
鸢栀w3 小时前
前端css学习笔记7:各种居中布局&空白问题
前端·css·笔记·学习·尚硅谷网课
之歆3 小时前
大模型微调分布式训练-大模型压缩训练(知识蒸馏)-大模型推理部署(分布式推理与量化部署)-大模型评估测试(OpenCompass)
人工智能·笔记·python
十行代码九行报错4 小时前
Docker基础学习笔记
笔记·学习·docker
所愿ღ9 小时前
JavaWeb-Servlet基础
笔记·servlet
岑梓铭10 小时前
考研408《计算机组成原理》复习笔记,第五章(2)——CPU指令执行过程
笔记·考研·408·计算机组成原理·计组
oe101914 小时前
读From GPT-2 to gpt-oss: Analyzing the Architectural Advances(续)
笔记·gpt·学习
Include everything17 小时前
Rust学习笔记(三)|所有权机制 Ownership
笔记·学习·rust