《图解技术体系》Intelligent Agent Architecture Design

Intelligent Agent Architecture Design

Intelligent agent architecture design involves structuring the components and processes that enable an agent to perceive its environment, make decisions, and take actions autonomously. The design typically includes perception, reasoning, decision-making, and action execution modules.

Key Components of Intelligent Agent Architecture

Perception Module

The perception module collects data from the environment through sensors or input channels. This data is processed into a format usable by the agent for decision-making.

python 复制代码
class PerceptionModule:
    def __init__(self, sensors):
        self.sensors = sensors
    
    def observe(self):
        return [sensor.read() for sensor in self.sensors]

Knowledge Base

The knowledge base stores information about the environment, rules, and past experiences. It supports reasoning by providing access to relevant data.

python 复制代码
class KnowledgeBase:
    def __init__(self):
        self.facts = {}
    
    def update(self, key, value):
        self.facts[key] = value
    
    def query(self, key):
        return self.facts.get(key)

Reasoning Engine

The reasoning engine processes the perceived data and knowledge to derive conclusions or plans. It may use rule-based systems, machine learning models, or other AI techniques.

python 复制代码
class ReasoningEngine:
    def __init__(self, kb):
        self.kb = kb
    
    def infer(self, observation):
        if observation in self.kb.facts:
            return self.kb.query(observation)
        return None

Decision-Making Module

This module evaluates possible actions based on the agent's goals and current state. It may employ utility functions, reinforcement learning, or heuristic search.

python 复制代码
class DecisionMaker:
    def __init__(self, actions):
        self.actions = actions
    
    def decide(self, state):
        return max(self.actions, key=lambda a: a.utility(state))

Action Execution Module

The action module translates decisions into physical or digital actions, often through actuators or output interfaces.

python 复制代码
class ActionModule:
    def __init__(self, actuators):
        self.actuators = actuators
    
    def execute(self, action):
        for actuator in self.actuators:
            actuator.act(action)
Types of Agent Architectures

Reactive Agents

Reactive agents respond directly to environmental stimuli without internal state or memory. They are simple but limited in complex tasks.

python 复制代码
class ReactiveAgent:
    def __init__(self, perception, action):
        self.perception = perception
        self.action = action
    
    def run(self):
        obs = self.perception.observe()
        act = self.action.decide(obs)
        self.action.execute(act)

Deliberative Agents

Deliberative agents maintain an internal model of the world and use planning to achieve goals. They are more flexible but computationally intensive.

python 复制代码
class DeliberativeAgent:
    def __init__(self, perception, reasoning, decision, action):
        self.perception = perception
        self.reasoning = reasoning
        self.decision = decision
        self.action = action
    
    def run(self):
        obs = self.perception.observe()
        state = self.reasoning.infer(obs)
        act = self.decision.decide(state)
        self.action.execute(act)

Hybrid Agents

Hybrid agents combine reactive and deliberative approaches, balancing speed and adaptability. They often use layered architectures.

python 复制代码
class HybridAgent:
    def __init__(self, reactive_layer, deliberative_layer):
        self.reactive = reactive_layer
        self.deliberative = deliberative_layer
    
    def run(self):
        if urgent_condition:
            self.reactive.run()
        else:
            self.deliberative.run()
Design Considerations

Scalability

The architecture should handle increasing complexity in tasks and environments without significant redesign.

Modularity

Components should be loosely coupled to allow independent updates or replacements.

Real-Time Performance

For time-sensitive applications, the architecture must minimize latency in perception-to-action cycles.

Adaptability

The agent should learn from experience and adjust its behavior dynamically.

python 复制代码
class LearningAgent:
    def __init__(self, model):
        self.model = model
    
    def update(self, experience):
        self.model.train(experience)

By carefully designing these components and their interactions, intelligent agents can effectively operate in diverse and dynamic environments.

相关推荐
Loo国昌2 分钟前
【LangChain1.0】第九阶段:文档处理工程 (LlamaIndex)
人工智能·后端·python·算法·langchain
罗伯特_十三5 分钟前
Spring AI ChatModel 使用记录
java·人工智能·spring
AIbase20246 分钟前
AI时代品牌流量争夺战:如何通过“品牌AI搜索监控”提升GEO可见度?
人工智能·chatgpt
老鱼说AI20 分钟前
论文精读第七期:告别昂贵的人工标注!Math-Shepherd:如何用“零成本”自动化过程监督,让大模型数学能力暴涨?
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·boosting
好奇龙猫27 分钟前
【人工智能学习-AI入试相关题目练习-第九次】
人工智能·学习
aspxiy1 小时前
知识求解器:教会大型语言模型从知识图谱中搜索领域知识
人工智能·语言模型·自然语言处理·知识图谱
梦想是成为算法高手1 小时前
带你从入门到精通——知识图谱(一. 知识图谱入门)
人工智能·pytorch·python·深度学习·神经网络·知识图谱
沛沛老爹1 小时前
从Web到AI:行业专属Agent Skills生态系统技术演进实战
java·开发语言·前端·vue.js·人工智能·rag·企业转型
B站计算机毕业设计超人1 小时前
计算机毕业设计Python+大模型音乐推荐系统 音乐数据分析 音乐可视化 音乐爬虫 知识图谱 大数据毕业设计
人工智能·hadoop·爬虫·python·数据分析·知识图谱·课程设计