《图解技术体系》Intelligent Agent Architecture Design

Intelligent Agent Architecture Design

Intelligent agent architecture design involves structuring the components and processes that enable an agent to perceive its environment, make decisions, and take actions autonomously. The design typically includes perception, reasoning, decision-making, and action execution modules.

Key Components of Intelligent Agent Architecture

Perception Module

The perception module collects data from the environment through sensors or input channels. This data is processed into a format usable by the agent for decision-making.

python 复制代码
class PerceptionModule:
    def __init__(self, sensors):
        self.sensors = sensors
    
    def observe(self):
        return [sensor.read() for sensor in self.sensors]

Knowledge Base

The knowledge base stores information about the environment, rules, and past experiences. It supports reasoning by providing access to relevant data.

python 复制代码
class KnowledgeBase:
    def __init__(self):
        self.facts = {}
    
    def update(self, key, value):
        self.facts[key] = value
    
    def query(self, key):
        return self.facts.get(key)

Reasoning Engine

The reasoning engine processes the perceived data and knowledge to derive conclusions or plans. It may use rule-based systems, machine learning models, or other AI techniques.

python 复制代码
class ReasoningEngine:
    def __init__(self, kb):
        self.kb = kb
    
    def infer(self, observation):
        if observation in self.kb.facts:
            return self.kb.query(observation)
        return None

Decision-Making Module

This module evaluates possible actions based on the agent's goals and current state. It may employ utility functions, reinforcement learning, or heuristic search.

python 复制代码
class DecisionMaker:
    def __init__(self, actions):
        self.actions = actions
    
    def decide(self, state):
        return max(self.actions, key=lambda a: a.utility(state))

Action Execution Module

The action module translates decisions into physical or digital actions, often through actuators or output interfaces.

python 复制代码
class ActionModule:
    def __init__(self, actuators):
        self.actuators = actuators
    
    def execute(self, action):
        for actuator in self.actuators:
            actuator.act(action)
Types of Agent Architectures

Reactive Agents

Reactive agents respond directly to environmental stimuli without internal state or memory. They are simple but limited in complex tasks.

python 复制代码
class ReactiveAgent:
    def __init__(self, perception, action):
        self.perception = perception
        self.action = action
    
    def run(self):
        obs = self.perception.observe()
        act = self.action.decide(obs)
        self.action.execute(act)

Deliberative Agents

Deliberative agents maintain an internal model of the world and use planning to achieve goals. They are more flexible but computationally intensive.

python 复制代码
class DeliberativeAgent:
    def __init__(self, perception, reasoning, decision, action):
        self.perception = perception
        self.reasoning = reasoning
        self.decision = decision
        self.action = action
    
    def run(self):
        obs = self.perception.observe()
        state = self.reasoning.infer(obs)
        act = self.decision.decide(state)
        self.action.execute(act)

Hybrid Agents

Hybrid agents combine reactive and deliberative approaches, balancing speed and adaptability. They often use layered architectures.

python 复制代码
class HybridAgent:
    def __init__(self, reactive_layer, deliberative_layer):
        self.reactive = reactive_layer
        self.deliberative = deliberative_layer
    
    def run(self):
        if urgent_condition:
            self.reactive.run()
        else:
            self.deliberative.run()
Design Considerations

Scalability

The architecture should handle increasing complexity in tasks and environments without significant redesign.

Modularity

Components should be loosely coupled to allow independent updates or replacements.

Real-Time Performance

For time-sensitive applications, the architecture must minimize latency in perception-to-action cycles.

Adaptability

The agent should learn from experience and adjust its behavior dynamically.

python 复制代码
class LearningAgent:
    def __init__(self, model):
        self.model = model
    
    def update(self, experience):
        self.model.train(experience)

By carefully designing these components and their interactions, intelligent agents can effectively operate in diverse and dynamic environments.

相关推荐
在猴站学算法3 小时前
机器学习(西瓜书) 第二章 模型评估与选择
人工智能·机器学习
科技宅说4 小时前
36氪专访丨乐橙CEO谢运:AI科技下的业务创新与长期主义下的品牌坚守
人工智能·科技
学术小八5 小时前
2025年人工智能、虚拟现实与交互设计国际学术会议
人工智能·交互·vr
仗剑_走天涯6 小时前
基于pytorch.nn模块实现线性模型
人工智能·pytorch·python·深度学习
cnbestec7 小时前
协作机器人UR7e与UR12e:轻量化设计与高负载能力助力“小而美”智造升级
人工智能·机器人·协作机器人·ur协作机器人·ur7e·ur12e
zskj_zhyl7 小时前
毫米波雷达守护银发安全:七彩喜跌倒检测仪重构居家养老防线
人工智能·安全·重构
gaosushexiangji8 小时前
利用sCMOS科学相机测量激光散射强度
大数据·人工智能·数码相机·计算机视觉
前端_学习之路8 小时前
React--Fiber 架构
前端·react.js·架构
ai小鬼头9 小时前
AIStarter新版重磅来袭!永久订阅限时福利抢先看
人工智能·开源·github
说私域10 小时前
从品牌附庸到自我表达:定制开发开源AI智能名片S2B2C商城小程序赋能下的营销变革
人工智能·小程序