《图解技术体系》Intelligent Agent Architecture Design

Intelligent Agent Architecture Design

Intelligent agent architecture design involves structuring the components and processes that enable an agent to perceive its environment, make decisions, and take actions autonomously. The design typically includes perception, reasoning, decision-making, and action execution modules.

Key Components of Intelligent Agent Architecture

Perception Module

The perception module collects data from the environment through sensors or input channels. This data is processed into a format usable by the agent for decision-making.

python 复制代码
class PerceptionModule:
    def __init__(self, sensors):
        self.sensors = sensors
    
    def observe(self):
        return [sensor.read() for sensor in self.sensors]

Knowledge Base

The knowledge base stores information about the environment, rules, and past experiences. It supports reasoning by providing access to relevant data.

python 复制代码
class KnowledgeBase:
    def __init__(self):
        self.facts = {}
    
    def update(self, key, value):
        self.facts[key] = value
    
    def query(self, key):
        return self.facts.get(key)

Reasoning Engine

The reasoning engine processes the perceived data and knowledge to derive conclusions or plans. It may use rule-based systems, machine learning models, or other AI techniques.

python 复制代码
class ReasoningEngine:
    def __init__(self, kb):
        self.kb = kb
    
    def infer(self, observation):
        if observation in self.kb.facts:
            return self.kb.query(observation)
        return None

Decision-Making Module

This module evaluates possible actions based on the agent's goals and current state. It may employ utility functions, reinforcement learning, or heuristic search.

python 复制代码
class DecisionMaker:
    def __init__(self, actions):
        self.actions = actions
    
    def decide(self, state):
        return max(self.actions, key=lambda a: a.utility(state))

Action Execution Module

The action module translates decisions into physical or digital actions, often through actuators or output interfaces.

python 复制代码
class ActionModule:
    def __init__(self, actuators):
        self.actuators = actuators
    
    def execute(self, action):
        for actuator in self.actuators:
            actuator.act(action)
Types of Agent Architectures

Reactive Agents

Reactive agents respond directly to environmental stimuli without internal state or memory. They are simple but limited in complex tasks.

python 复制代码
class ReactiveAgent:
    def __init__(self, perception, action):
        self.perception = perception
        self.action = action
    
    def run(self):
        obs = self.perception.observe()
        act = self.action.decide(obs)
        self.action.execute(act)

Deliberative Agents

Deliberative agents maintain an internal model of the world and use planning to achieve goals. They are more flexible but computationally intensive.

python 复制代码
class DeliberativeAgent:
    def __init__(self, perception, reasoning, decision, action):
        self.perception = perception
        self.reasoning = reasoning
        self.decision = decision
        self.action = action
    
    def run(self):
        obs = self.perception.observe()
        state = self.reasoning.infer(obs)
        act = self.decision.decide(state)
        self.action.execute(act)

Hybrid Agents

Hybrid agents combine reactive and deliberative approaches, balancing speed and adaptability. They often use layered architectures.

python 复制代码
class HybridAgent:
    def __init__(self, reactive_layer, deliberative_layer):
        self.reactive = reactive_layer
        self.deliberative = deliberative_layer
    
    def run(self):
        if urgent_condition:
            self.reactive.run()
        else:
            self.deliberative.run()
Design Considerations

Scalability

The architecture should handle increasing complexity in tasks and environments without significant redesign.

Modularity

Components should be loosely coupled to allow independent updates or replacements.

Real-Time Performance

For time-sensitive applications, the architecture must minimize latency in perception-to-action cycles.

Adaptability

The agent should learn from experience and adjust its behavior dynamically.

python 复制代码
class LearningAgent:
    def __init__(self, model):
        self.model = model
    
    def update(self, experience):
        self.model.train(experience)

By carefully designing these components and their interactions, intelligent agents can effectively operate in diverse and dynamic environments.

相关推荐
学术小白人2 分钟前
IEEE出版|连续多年稳定检索|第三届信号处理与智能计算国际学术会议(SPIC2025)
人工智能·计算机网络·计算机视觉·云计算·信号处理
OceanBase数据库官方博客7 分钟前
蚂蚁集团 CTO 何征宇:AGI时代,海量数据带来的质变|OceanBase 开发者大会实录
人工智能·oceanbase·分布式数据库·开发者大会
颜颜yan_9 分钟前
【HarmonyOS5】Stage模型应用程序包结构详解
架构·系统架构·harmonyos·鸿蒙
keke1025 分钟前
WPF【11_4】WPF实战-重构与美化(MVVM 架构)
重构·架构·wpf
沛沛老爹26 分钟前
微服务难题?Nacos服务发现来救场
微服务·nacos·架构·服务发现·注册中心·服务中心
wx_xkq128831 分钟前
智能体赋能效率,企业知识库沉淀价值:UMI企业智脑的双轮驱动!
人工智能·aigc
小鸡吃石子36 分钟前
大语言模型(LLM)入门项目推荐
人工智能·机器学习·语言模型
雪碧聊技术1 小时前
认识微服务
微服务·云原生·架构
思绪漂移1 小时前
深度学习中的卷积和反卷积
人工智能·深度学习
tomplus211 小时前
ai客服平台哪家好:AnKo多模型AI聚合时代!
人工智能·ai·ai网站·ai软件·ai聚合·ai智能化·ai代运营