《图解技术体系》Intelligent Agent Architecture Design

Intelligent Agent Architecture Design

Intelligent agent architecture design involves structuring the components and processes that enable an agent to perceive its environment, make decisions, and take actions autonomously. The design typically includes perception, reasoning, decision-making, and action execution modules.

Key Components of Intelligent Agent Architecture

Perception Module

The perception module collects data from the environment through sensors or input channels. This data is processed into a format usable by the agent for decision-making.

python 复制代码
class PerceptionModule:
    def __init__(self, sensors):
        self.sensors = sensors
    
    def observe(self):
        return [sensor.read() for sensor in self.sensors]

Knowledge Base

The knowledge base stores information about the environment, rules, and past experiences. It supports reasoning by providing access to relevant data.

python 复制代码
class KnowledgeBase:
    def __init__(self):
        self.facts = {}
    
    def update(self, key, value):
        self.facts[key] = value
    
    def query(self, key):
        return self.facts.get(key)

Reasoning Engine

The reasoning engine processes the perceived data and knowledge to derive conclusions or plans. It may use rule-based systems, machine learning models, or other AI techniques.

python 复制代码
class ReasoningEngine:
    def __init__(self, kb):
        self.kb = kb
    
    def infer(self, observation):
        if observation in self.kb.facts:
            return self.kb.query(observation)
        return None

Decision-Making Module

This module evaluates possible actions based on the agent's goals and current state. It may employ utility functions, reinforcement learning, or heuristic search.

python 复制代码
class DecisionMaker:
    def __init__(self, actions):
        self.actions = actions
    
    def decide(self, state):
        return max(self.actions, key=lambda a: a.utility(state))

Action Execution Module

The action module translates decisions into physical or digital actions, often through actuators or output interfaces.

python 复制代码
class ActionModule:
    def __init__(self, actuators):
        self.actuators = actuators
    
    def execute(self, action):
        for actuator in self.actuators:
            actuator.act(action)
Types of Agent Architectures

Reactive Agents

Reactive agents respond directly to environmental stimuli without internal state or memory. They are simple but limited in complex tasks.

python 复制代码
class ReactiveAgent:
    def __init__(self, perception, action):
        self.perception = perception
        self.action = action
    
    def run(self):
        obs = self.perception.observe()
        act = self.action.decide(obs)
        self.action.execute(act)

Deliberative Agents

Deliberative agents maintain an internal model of the world and use planning to achieve goals. They are more flexible but computationally intensive.

python 复制代码
class DeliberativeAgent:
    def __init__(self, perception, reasoning, decision, action):
        self.perception = perception
        self.reasoning = reasoning
        self.decision = decision
        self.action = action
    
    def run(self):
        obs = self.perception.observe()
        state = self.reasoning.infer(obs)
        act = self.decision.decide(state)
        self.action.execute(act)

Hybrid Agents

Hybrid agents combine reactive and deliberative approaches, balancing speed and adaptability. They often use layered architectures.

python 复制代码
class HybridAgent:
    def __init__(self, reactive_layer, deliberative_layer):
        self.reactive = reactive_layer
        self.deliberative = deliberative_layer
    
    def run(self):
        if urgent_condition:
            self.reactive.run()
        else:
            self.deliberative.run()
Design Considerations

Scalability

The architecture should handle increasing complexity in tasks and environments without significant redesign.

Modularity

Components should be loosely coupled to allow independent updates or replacements.

Real-Time Performance

For time-sensitive applications, the architecture must minimize latency in perception-to-action cycles.

Adaptability

The agent should learn from experience and adjust its behavior dynamically.

python 复制代码
class LearningAgent:
    def __init__(self, model):
        self.model = model
    
    def update(self, experience):
        self.model.train(experience)

By carefully designing these components and their interactions, intelligent agents can effectively operate in diverse and dynamic environments.

相关推荐
CV-杨帆3 分钟前
论文阅读:openai 2025 Why Language Models Hallucinate
论文阅读·人工智能·语言模型
javastart7 分钟前
OpenRLHF:面向超大语言模型的高性能RLHF训练框架
人工智能·自然语言处理·aigc
IT_陈寒9 分钟前
《Java 21新特性实战:5个必学的性能优化技巧让你的应用快30%》
前端·人工智能·后端
说私域14 分钟前
定制开发开源AI智能名片S2B2C商城小程序在互联网族群化中的作用与影响
人工智能·小程序·开源
说私域16 分钟前
开源AI大模型AI智能名片S2B2C商城小程序在互联网族群化中的作用与影响
人工智能·小程序·开源
Ttang2325 分钟前
ES+MySQL实时搜索架构实战解析
mysql·elasticsearch·架构
a别念m27 分钟前
前端架构-CSR、SSR 和 SSG
前端·架构·前端框架
29 分钟前
主动性算法-解决点:新陈代谢
人工智能
qq_508823404 小时前
金融量化指标--5Sortino索提诺比率
人工智能·microsoft
AIbase20245 小时前
AI技术架构与GEO算法原理如何重塑搜索引擎可见性
人工智能·搜索引擎·架构